
Functions
6.1000 LECTURE 3

16.1000 LECTURE 3

Previously (on the 6.1000 TV show)

▪ Elements of computation in Python
◦ objects, operations, branching, looping

◦ variables to keep track of obejcts

▪ Limitations
◦ input/output through setting variables or terminal text

▪ Today
◦ organize code into reusable sub-programs: functions

◦ Python syntax for functions

◦ semantics of calling functions

◦ strategies for using functions, cool Python features

6.1000 LECTURE 3 2

Status check

▪ Following class content
◦ okay if not replicating class coding in real time

◦ but be able to recreate the steps on your own

▪ Work on finger exercises early

▪ Ask for help if needed
◦ office hours MTWR 11 am to 9 pm, F until 5 pm

◦ instructor office hours Thu 1:30 pm or by appointment

▪ Last day to switch to 6.100A is next Tue 9/16

6.1000 LECTURE 3 3

Last time: Divisibility by 3

▪ Mixing levels of conceptual detail

▪ Input limited to variable assignment or input()
◦ have to manually edit line

◦ error-prone

▪ Output limited to print() or other variable assignment
◦ lack of reuse

6.1000 LECTURE 3 4

Functions as contained programs

▪ Accept input through parameters

▪ Produce output through a return statement

▪ Body code is indented
◦ hence need pass if empty

6.1000 LECTURE 3 5

def is_oddly_even(num):
div_by_2 = num % 2 == 0
div_by_4 = num % 4 == 0
return div_by_2 and not div_by_4

Using functions

▪ num is formal parameter

▪ def is_oddly_even(num): is function signature

▪ Call with a concrete argument is_oddly_even(10)

▪ Body code runs with num assigned to 10

▪ Body code stops when return False

▪ Function call at top level evaluates to return value

6.1000 LECTURE 3 6

def is_oddly_even(num):
div_by_2 = num % 2 == 0
div_by_4 = num % 4 == 0
return div_by_2 and not div_by_4

result = is_oddly_even(10)
print(result)

Mechanism of function calls

1. Identify function object

2. Evaluate arguments in order

3. Set up frame/environment for function

4. Assign parameter names in frame

5. Run body with respect to that frame until return
▪ If reference any variables not in frame, look instead in the global frame

6. Evaluate original function call as returned object

6.1000 LECTURE 3 7

None

▪ None is a special value in Python
◦ indicates absence of any meaningful value

◦ needs to be represented by an actual object

▪ None is the only object of type NoneType

▪ All functions must return (i.e., evaluate to) some object
◦ if body ends without encountering return statement,

automatically returns None

▪ E.g., print() is called for side-effect of displaying text
◦ doesn’t affect objects in memory

◦ evaluates to None

▪ Beware: None acts like False if used as a condition

6.1000 LECTURE 3 8

6.1000 LECTURE 1 9

Divisibility check

▪ Step 1: Put it in a function

▪ Call it with a single parameter for upper_limit
◦ easier than hunting for the line to change

◦ easy to call repeatedly on different inputs

6.1000 LECTURE 3 10

Divisibility check v2

▪ Separate out helper functions

◦ add_digits(num)

◦ check_rule_on_instance(num, digits_sum)

▪ Now easier to improve each helper’s code on its own
◦ better readability in main function

◦ simplify Boolean logic in check_rule_on_instance()

▪ Consolidate print()s into main function

6.1000 LECTURE 3 11

Divisibility check v3

▪ Separate checking code from reporting code

▪ Previous top-level function only returns True or False
◦ no longer need rule_holds flag

◦ early returns in functions simplify control flow

6.1000 LECTURE 3 12

Divisibility check v4 [exercise]

▪ Extend v3 code to check divisibility rule for numbers beyond 3

6.1000 LECTURE 3 13

for k in range(3, 10):
report_divisibility_checks(k, 100)

Generalizing finding roots

▪ Public function

◦ find_root(num, ...)

▪ Actual algorithm implementation

◦ bisection_root(...)

▪ Sub-helper
◦ get_next_guess(lower, upper, ...)

6.1000 LECTURE 3 14

Generalizing finding roots

▪ Docstrings
◦ explain functions’ purpose and specification

◦ tells user how to use it, not how it works inside

◦ accessible via help() on Python REPL
◦ run $ python3 -i file.py to drop into REPL after running file

▪ Conventions
◦ triple-quoted string as first statement in body

◦ one-line summary of what it’s for

◦ specify parameters’ types, purpose, restrictions

◦ specify return type and meaning

◦ https://peps.python.org/pep-0257/

6.1000 LECTURE 3 15

https://peps.python.org/pep-0257/

Generalizing finding roots

▪ Handle n-th roots
◦ additional power parameter

◦ ultimately needed in get_next_guess()

◦ needs to get passed through from find_root() call

6.1000 LECTURE 3 16

Generalizing finding roots

▪ Default parameter values
◦ don’t want to force user to always specify power and
epsilon

◦ default values can be specified in function signature

◦ call find_root(12345)

◦ 2 and 0.01 are automatically substituted in for power and
epsilon

◦ convention: no spaces around =

6.1000 LECTURE 3 17

Generalizing finding roots

▪ Keyword-specified arguments
◦ can specify arguments in function call by keyword that

matches formal parameter name

◦ find_root(12345, epsilon=0.001)

◦ power still gets automatically assigned to 2

◦ keyword arguments can come in any order after positional
arguments

◦ also convention: no spaces around =

6.1000 LECTURE 3 18

Generalizing finding roots

▪ Multiple return values
◦ get_next_guess() returns both guess and evaluation of

its power

◦ in preparation for determining closeness

◦ multiple values separated by comma in return statement

◦ caller receives them by comma-separated variables

◦ actual story is even cooler, wait until Lecture 7

6.1000 LECTURE 3 19

Where we are

▪ Have all content needed to complete Pset 1
◦ due next Wed 9/17

◦ checkoffs start next Thu 9/18

▪ Recitation on Friday
◦ group exercise in reorganizing code into functions

◦ more practice with bisection search

▪ Can now abstract behaviors with functions. What about
abstracting data?
◦ Next couple weeks: collections of data

6.1000 LECTURE 3 20

