
Branching and 
Looping
6.1000 LECTURE 2

16.1000 LECTURE 2



Course instructors

▪ 6.1000
◦ Andrew Wang

◦ Tim Kraska

▪ 6.100A
◦ Ana Bell

▪ 6.100B
◦ John Guttag

▪ Contacts for 6.1000
◦ 6.1000-staff@mit.edu

◦ 6.1000-instructors@mit.edu

6.1000 LECTURE 2 2

mailto:6.1000-staff@mit.edu
mailto:6.1000-instructors@mit.edu


Last time

▪ computation, representation, objects

▪ types, operations

▪ variables

▪ syntax of str operations

6.1000 LECTURE 2 3



Why Python in 6.100

▪ Advantages
◦ widely used

◦ straightforward syntax

◦ straightforward semantics

◦ focus on programming concepts, away from hardware

◦ well-designed conveniences

▪ Disadvantages
◦ widely used

◦ many features

◦ well-designed conveniences

6.1000 LECTURE 2 4



Computability and the Turing machine

▪ What mechanisms are
needed to compute?

▪ What tasks are actually
computable?

▪ Consider idealized 
hardware: Turing machine
◦ infinite tape

◦ read/write head

◦ internal state

▪ Program is a table lookup
◦ ends when land on a HALT 

state

6.1000 LECTURE 2 5

▪ Each time step:
◦ Input

◦ read tape symbol
look up current state

◦ Output
◦ write tape symbol
◦ move head left/right
◦ set next state



Conditionals

▪ Revisit square roots algorithm
◦ guess an answer

◦ compare guess2 to input

◦ if close enough, stop

◦ otherwise, update new guess = (guess + input / guess) / 2

◦ compare guess2 to input

◦ …

▪ Python syntax

◦ if boolean expression:
do something

else:
do another thing

6.1000 LECTURE 2 6



Conditionals syntax

▪ No curly braces

▪ Indentation matters!
◦ convention is 4 spaces

◦ require pass statement in empty block

▪ Immediately nested else: if: can be collapsed to elif:
◦ reduces indentation

▪ Immediately nested if: a if: b not always equivalent to 
if a and b:

6.1000 LECTURE 2 7



Limitations so far

▪ Square root algorithm
◦ don’t know in advance how many times to check closeness

▪ Deeper issue
◦ operations only: each line gets run in sequence

◦ plus conditionals: each line gets run at most once

◦ implication: programs must be as long as all the possibilities 
they could compute

◦ need to compactly express computations that could produce 
rich set of outputs

6.1000 LECTURE 2 8



Looping with while

▪ General mechanism in Python

◦ while condition:
body code of loop
...

▪ Loop exits only once condition is False
◦ condition is an unchanging expression in code

◦ but its evaluation depends on what variables it references

◦ so body code needs to update relevant variables

6.1000 LECTURE 2 9



Looping with for

▪ Python syntax

◦ for var in iterable:
loop body code
...

▪ A Python iterable is a certain type of object
◦ produces one value at a time specifically when “queried” by 

the for mechanism

◦ so far, we’ve encountered str and range types

◦ https://docs.python.org/3/library/stdtypes.html#range

▪ Loop automatically exits when iterable is exhausted
◦ for makes repeated assignments to variable var until then

6.1000 LECTURE 2 10

https://docs.python.org/3/library/stdtypes.html#range


Generate-and-test

▪ A broad computational theme, naturally expressed with loops

▪ Generate
◦ enumerate possible solutions respecting some constraints

▪ Test
◦ check each candidate against remaining constraints

▪ Other names
◦ guess-and-check

◦ exhaustive enumeration

◦ brute force

6.1000 LECTURE 2 11



Generate-and-test scenario

▪ Alyssa, Ben, and Cindy are selling tickets to a fundraiser.
◦ Ben sells 20 fewer than Alyssa

◦ Cindy sells twice as many as Alyssa

◦ 1000 total tickets were sold by the three people

▪ How many tickets did each sell?
◦ could solve this algebraically

◦ let’s try exhaustive enumeration and testing each candidate 
solution

6.1000 LECTURE 2 12



Interrupting loop execution

▪ break
◦ immediately jumps out of loop

◦ e.g., looking for any solution, found one

▪ continue
◦ stops current loop iteration

◦ hands control back to while or for to start next iteration

◦ e.g., current candidate violates a constraint, no need to 
check remaining constraints

6.1000 LECTURE 2 13



Generate-and-test: Bisection search

▪ Scenario: back to square roots

▪ Suppose didn’t know original algorithm
◦ could step through candidate numbers starting from 1, 

1.001, 1.002, 1.003, …

◦ wasteful and slow

▪ Insight: n2 increases monotonically with n
◦ if guess2 < query, then can infer guess < true root

◦ if we chose guess wisely, can remove large chunks of 
candidate space

6.1000 LECTURE 2 14



Generate-and-test: Bisection search

▪ Algorithm: maintain lower and upper bounds
◦ choose guess in the middle

◦ evaluate against query

◦ prune half of feasible range by adjusting lower or upper

▪ Monotonicity is important
◦ formulated for one-dimensional situations

▪ Can adapt to discrete sequences as well
◦ find a middle index position

◦ determine whether answer lies to the left, right, or on it

▪ Terminology
◦ bisection (continuous) vs binary (discrete) search

6.1000 LECTURE 2 15



So far

▪ Computation is about expressing mechanism to get from 
input to output

▪ Have provided all means necessary to express any 
computation
◦ objects, operations, conditionals, looping

▪ Limitations
◦ can only use variables or terminal for input/output

◦ requires manual effort

◦ hard for programs to talk to each other and get reused

▪ Next time
◦ organize behaviors into “modular” subprograms

◦ Python’s function mechanism

6.1000 LECTURE 2 16


