
6.100A
Final Review

1

Type of knowledge
Declarative knowledge - a statement of fact
● Stata is building 32

Imperative knowledge - a recipe, ‘how-to’ knowledge
1. Start at Student Center
2. Walk down Mass Ave, towards Vassar St
3. Make a right on Vassar
4. Walk until you see a funky-looking building

Programming is about writing recipes to generate facts!

2

Expressions and Statements
Expression - combination of objects and operators, and can be evaluated to a
value
● 3 + 5
● a or (True and b)

Statements - instructs the interpreter to perform some action
● print(3 + 5)
● return a or (True and b)

3

Primitive Types
1) Boolean → True, False
2) Strings → “abc”, “123”, “@#%!$&@*”
3) Numbers:

a) ints: 0, 1, 2, 3
b) floats: 1., 1.46, 8.76, 1.1111

4) None

4

Type Issues
a. 1 // 2 = 0 (integer division)
b. 1.0 // 2 = 0.0 (integer division casted (implicitly) to float)
c. 1 / 2 = 0.5 (float division)
d. int(1 / 2) = 0 (casting)

NOTE: integer division truncates the answer – it does NOT round to nearest int
(use round for that)
7 / 3 = 2.33333333
7 // 3 = 2
7 / 4 = 1.75
7 // 4 = 1
 5

Operations
● Arithmetic operations (follow order of operations / PEMDAS rules)

○ +, -, *, /
○ ** for exponents
○ % modulo to get remainder

● String operations
○ + for concatenation
○ * to repeat

● Boolean comparators
○ >, >=, <, <=, ==, !=

● Logical operators
○ and, or, not

6

Representing Numbers - Binary
Integers are represented in base 2, also known as binary:

7

1 0 1 1 0 1 0 1 = 181
27 26 25 24 23 22 21 20

 128 + 0 + 32 + 16 + 0 + 4 + 0 + 1

Representing Numbers - Floats
Two parts, the mantissa and the exponent, both represented in binary

8

1.25 = 5 * 2-2 = (101, -10)

M * 2p → (M, p)
mantissa exponent

T/F Question!

T/F Question: The value of ‘math.sqrt(2.0)*math.sqrt(2.0) == 2.0’ is True.

False! 2.0000000000000004 != 2.0

9

Approximation - Floats

10

Questions?

11

Swap Variables: Question

x = 1
y = 2
y = x
x = y

12

Swap Variables

x = 1
y = 2
temp = y
y = x
x = temp

x = 1
y = 2
y = x
x = y

13

x = 1
y = 2
y, x = x, y

Very pythonic!

Control: IF
if condition 1:

 # some code to run

if condition 2:

other code to be run

else:

some code to run if condition 2 was not met

14

Control: IF
if condition 1:

 # some code to run

elif condition 2:

some other code to run instead

else:

some more conditions to run if the other conditions weren’t met

15

Control: Loops

16

Control: For Loops
()

()()

()

17

Think about if you
want the element in
the iterable itself, or
just its index

Example Question
T = (0.1, 0.1)
x = 0.0

for i in range(len(T)):

for j in T:
 x += i + j
 print (x)

print(i)

18

What is going to be printed?

Example Question
T = (0.1, 0.1)
x = 0.0

for i in range(len(T)):

for j in T:
 x += i + j
 print (x)

print(i)

What is going to be printed?

Behind the scenes (bolded text is what is printed):
Remember, x += i + j is the equivalent of x = x + i + j

i = 0
j = 0.1

x = x + i + j → x = 0.0 + 0 + 0.1 = 0.1
j = 0.1

x = x + i + j → x = 0.1 + 0 + 0.1 = 0.2
i = 1

j = 0.1
x = x + i + j → x = 0.2 + 1 + 0.1 = 1.3

j = 0.1
x = x + i + j → x = 1.3 + 1 + 0.1 = 2.4

Last value of i was 1 → 1

19

Guess and Check
● Guess a value for the solution
● Check if the solution is correct
● Keep guessing until solution is good enough

 Process is exhaustive enumeration, can take really long to find answer

20

Example of Guess & Check: Finding Square Roots
)

21

Questions?

22

T/F Question :
Given a list L = ['f', 'b'] the statement L[1] = 'c' will mutate list L.

T/F Question :
Let L be a list, each element of which is a list of ints. In Python, the
assignment statement L[0][0] = 3 mutates the list L.

● Ordered sequence of elements
● Initialized with square brackets
● Mutable

Lists

True

False

>>> myList = [3,5,2,7]
>>> myList[0]
3
>>> myList[1] = 6
[3, 6, 2, 7]
>>> myList[:2]
[3, 6]

23

List Functions
>>> letters = ['a','b','d']
>>> len(letters)
3
>>> letters.append([‘e’])
['a', 'b', 'd', ['e']]
>>> letters.extend(['b', 'a'])
['a', 'b', 'd', ['e'], 'b', 'a']
>>> letters.insert(2, 'c')
['a', 'b', 'c', 'd', ['e'], 'b', 'a']

>>> letters.remove('a')
['b', 'c', 'd', ['e'], 'b', 'a']
>>> letters.reverse()
['a', 'b', ['e'], 'd', 'c', 'b']
>>> letters.pop()
'b'
>>> letters
['a', 'b', ['e'], 'd', 'c']

24

List Indexing
>>> letters = ['a', 'b', 'c', 'd', 'e']
>>> letters[:]
['a', 'b', 'c', 'd', 'e']
>>> letters[2:]
['c', 'd', 'e']
>>> letters[:2]
['a', 'b']
>>> letters[:-2]
['a', 'b', 'c']

>>> letters[::2]
['a', 'c', 'e']
>>> letters[::-1]
['e', 'd', 'c', 'b', 'a']
>>> letters[1:4:2]
['b', 'd']

25

List Comprehensions
Create a new list using the values in an existing one:

L1 = [0, 4, 8, 16]
L2 = [x ** 2 for x in L1]
print(L1)
print(L2)

26

A fast, pythonic trick!

>>> [0, 4, 8, 16]
>>> [0, 16, 64, 256]

Tuples
Like lists, but immutable

t1 = (1, 2, 3, “abc”)

t2 = (5, 6, t1)

Operations:

Concatenation: t1 + t2

Indexing: (t1+t2) [3]

Slicing: (t1+t2) [1:3]

● You can iterate over tuples
● You cannot mutate tuples
● Can be used as keys in the

dictionary (lists can’t) - why?

(1,2,3,'abc',5,6,(1,2
,3,'abc'))

‘abc’

(2,3)

27

Dictionaries
● Key, value pairs
● Keys can be integers, strings, tuples, etc. (anything immutable)
● Keys can’t be lists, dictionaries, etc. (anything mutable)
● Keys are unique, values don’t have to be

 T/F Question: In Python, the keys of a dict must be immutable.
 T/F Question: The dictionary {'a':'1', 'b':'2', 'c': '3'} has a mapping of string:int

True

False

28

Using Dictionaries
>>> zoo = {'elephant' : 3, 'giraffe' : 4}
>>> len(zoo)
2
>>> zoo['elephant']
3
>>> zoo['frog']
KeyError: 'frog'
>>> zoo.get(‘frog’, ‘Frog is not in zoo’)

‘Frog is not in zoo’
>>> if 'cheetah' not in zoo:

zoo['cheetah'] = 5

>>> zoo
{'cheetah': 5, 'giraffe': 4, 'elephant': 3}
>>> list(zoo.keys())
['cheetah', 'giraffe', 'elephant']
>>> list(zoo.values())
[5, 4, 3]
>>> del zoo['elephant']
>>> zoo
{'cheetah': 5, 'giraffe': 4}

29

Mutability & Aliasing
Mutable: Lists, Dictionaries, Sets
Immutable: Strings, int, float, bool, tuples

Aliasing: Two variables bound to the same object

>>> a = [1]
>>> b = a
>>> a.append(2)
>>> print (a)
[1, 2]
>>> print (b)
[1, 2]
 30

Mutability: Lists
L1 = ['a', 'b', 'c']
L2 = [[], L1, 1]
L3 = [[], ['a', 'b', 'c'], 1]
L4 = [L1]+L1
L2[1][2]='z'
print('L1 = ', L1)
print('L2 = ', L2)
print('L3 = ', L3)
print('L4 = ', L4)

What is going to be printed?

L1 = ['a', 'b', 'z']
L2 = [[], ['a', 'b', 'z'], 1]
L3 = [[], ['a', 'b', 'c'], 1]
L4 = [['a', 'b', 'z'], 'a', 'b', 'c']

31

Cloning
L1 = ['a', 'b', 'c']
L2 = L1[:]

print('L1 = ', L1)
print('L2 = ', L2)

L1.append('d')

print('L1 = ', L1)
print('L2 = ', L2)

What is going to be printed?

L1 = ['a', 'b', 'c']
L2 = ['a', 'b', 'c']
L1 = ['a', 'b', 'c', 'd']
L2 = ['a', 'b', 'c']

32

Questions?

33

Abstraction & Decomposition
How to think about and solve complex systems at a high-level:

● break up a problem into simpler building blocks
● give each block a name, forget about the details of how it’s built, just

know its inputs and outputs

34

Abstraction & Decomposition
Why abstract and decompose?

● better code organization
● fewer lines of code
● can test small units (testing full system may be unmanageable)

35

Abstraction & Decomposition
How do we abstract and decompose?

Functions !!!

the most basic unit of code abstraction

Variables abstract values

Functions abstract blocks of code

36

Functions

def function_name(arg1, arg2, …, argN):
'''
docstring here (can specify the function’s promise)
'''
#some code
#some more code
return something

1. name

3. Promises a certain behavior
(if given proper inputs)

2. Inputs
(parameters)

37

Calling a function ⇒ running it, with specific parameters

Functions

38

Functions
Calling a function ⇒ running it, with specific parameters

How to call a function:

● specify name
● pass the parameters
● optionally, save the returned output

out = function_name(x1,x2,…,xn)

39

Functions examples
function definition function call

Question: what’s the difference between even_or_odd() and even_or_odd in
code?

40

Functions examples

what does this do?

what is returned by mult_by_five ?

Prints: hihihihihi

None !

41

Lambda functions
A way to define a short function in one line, often to be used as an argument
to another function:

42

Questions?

43

Scope
scope dictates what parts of a program can see each variable’s value

44

Scope
scope dictates what parts of a program can see each variable’s value

● a scope is a table, mapping variable names to values
○ assignment (<variable> = <expression>) adds an item to the table

45

Scope
scope dictates what parts of a program can see each variable’s value

● a scope is a table, mapping variable names to values
○ assignment (<variable> = <expression>) adds an item to the table

● when your program starts, there’s one scope called global scope

46

Scope
scope dictates what parts of a program can see each variable’s value

● a scope is a table, mapping variable names to values
○ assignment (<variable> = <expression>) adds an item to the table

● when your program starts, there’s one scope called global scope
● when you call a function, a new scope is created

○ the scope is destroyed when the function returns

47

Scope
How is scope used?

● when a variable is used in an expression, the variable is looked up in the
current scope

48

Scope
How is scope used?

● when a variable is used in an expression, the variable is looked up in the
current scope

○ if not found, the variable is looked up in the scope where the function
was defined

49

Scope
How is scope used?

● when a variable is used in an expression, the variable is looked up in the
current scope

○ if not found, the variable is looked up in the scope where the function
was defined

○ if not found there, repeat until found or we hit global scope and still
not found

50

Scope

51

x = 5
y = 8

global

def my_function(x):
y = 10

 print(y)
return x * y

print(my_function(9))

print(x)
print(y)

90

5
8

10

Exam Question

What is going to be printed?

()

()

() 3
-3
 3

52

Scope
def f(x):
 print('In f(x): x =', x)
 print('In f(x): y =', y)
 def g():
 print('In g(): x =', x)
 g()

x = 3
y = 2
f(1)

in f (x) : x = 1
in f (x) : y = 2

in g () : x = 1

53

Questions?

54

Recursion
a recursive function is any function that calls itself

55

Recursion
a recursive function is any function that calls itself

Two crucial structural characteristics:

● Base case: a simplest version of the input
○ no recursive calls in base case

56

Recursion
a recursive function is any function that calls itself

Two crucial structural characteristics:

● Base case: a simplest version of the input
○ no recursive calls in base case

● Recursive case: makes one or more recursive calls with a simpler input
○ recursive calls must bring us closer to the base case
○ some basic computation is done in addition to the recursive calls

57

Recursion
When to use recursion?

58

Recursion
When to use recursion?

when a problem can be solved easily if

we have the answer to a subproblem of the same form

59

Recursion examples
Integer multiplication

a*b = a + a*(b-1)

Factorial

n! = n * (n-1)!

Fibonacci

fib(n) = fib(n-1) + fib(n-2)

60

Recursion examples
Integer multiplication a*b = a + a*(b-1)

61

Recursion examples
Factorial n! = n * (n-1)!

62

Recursion examples
Fibonacci fib(n) = fib(n-1) + fib(n-2)

63

Final Review
Session Part 2

64

Complexity
● An algorithm might be useless if it takes too long to get an answer

● We need a notion to measure how long an algorithm takes

● We would like our notion to be independent of the machine it runs on

65

Big O? Θ? 𝛀?
O(g(n))

Describes an upper bound on the runtime complexity

Ω(g(n))
Describes a lower bound on the runtime complexity

Θ(g(n))
Describes the tight (upper and lower) bound on the runtime complexity

66

Big Θ Notation
● Describes the runtime of an algorithm as a function of its input size

● Typically describes the worst case runtime
○ “In the worst case, how much time will it take for this algorithm to run?”

● When describing an algorithm, choose the tightest bound

67

Examples
I have a function f(x) = 3x2 + 2x + 1

O(g(n))

Can be O(n2), because there exists g(n) = 4x2 that will surpass f(x)

But could also be O(n3), for example, since it will always surpass f(x)

Ω(g(n))

Could be Ω(n), meaning the complexity will always surpass g(n) = n

Θ(g(n))
Must be Θ(n2), because it is both an upper and lower bound

i.e. 4x2 and x2
68

bigocheatsheet.com

69

Big Θ Notation Mechanics
Fastest growing term dominates:

n^2 + 100n + 1000 log(n)

70

Big Θ Notation Mechanics
Fastest growing term dominates:

n^2 + 100n + 1000 log(n) = Θ(n^2)

71

Big Θ Notation Mechanics
Fastest growing term dominates:

n^2 + 100n + 1000 log(n) = Θ(n^2)

Constant factors do not affect complexity:

1000000000n = O(n) = 0.0000001n

72

Big Θ Notation Mechanics
Fastest growing term dominates:

n^2 + 100n + 1000 log(n) = Θ(n^2)

Constant factors do not affect complexity: <- WHY??

1000000000n = Θ(n) = 0.0000001n

73

Commonly Used Complexities in Algorithms
Θ(1) - Constant

Θ(log n) - Logarithmic

Θ(n) - Linear

Θ(n log n) - Log-Linear

Θ(nk) - Polynomial

Θ(kn) - Exponential

74

● Constant-time, Θ(1)
○ Assignment, x=2
○ Basic operations, + - * / > <

● Dictionary
○ Look-up: Θ(1)
○ Length: Θ(1)
○ Insert: Θ(1)
○ Delete: Θ(1)
○ dictionary.keys(): Θ(n) - because a list is generated
○ Check if a key is in the dictionary: Θ(1)

Complexity of built-in methods

75

● List
○ Append: Θ(1)
○ Length: Θ(1)
○ Insert: Θ(n)
○ Delete: Θ(n)
○ Copy: Θ(n)
○ Sort: Θ(n log n)
○ Check if an item is in the list: Θ(n)

■ “if elt in a_list:”

Complexity of built-in methods

76

Strategies for analyzing complexity
● Loops

○ # of iterations in the loop
○ Amount of work within each loop

● Recursive calls
○ # of recursive calls that are made
○ Amount of work done for each recursive call

Total Time = Time per Iteration * # of Iterations

 or Time per Call * # of Calls

77

What is the complexity?
def beep(n):

tot = 0

while n >= 2:

 tot += n

 n = n // 2

return tot

Complexity: Θ(log n)

78

What is the complexity?
def is_palindrome_iterate(s):
    ``` input size, n = len(s) ```
    string_len = len(s)
    i = 0
    while i < string_len//2 +1:
        if s[i] != s[-i-1]:
            return False
        i+=1
    return True Number of iterations: Θ(n)

Number of operations in each iteration: constant
Complexity: Θ(n)

79



def is_palindrome_recursive(s):
    if len(s) == 0: return True

    if len(s) == 1: return True

    else:
        first_char = s[0]
        last_char = s[-1]
        if first_char == last_char:
            return is_palindrome_recursive(s[1:-1])
        else:
            return False

n/2 recursive calls: Θ(n)
Slicing strings: Θ(n) 
Complexity: Θ(n^2)

Slicing a string = O(n)

What is the complexity?

80



Questions?

81



Search
● Linear search

○ Brute force search
○ List doesn’t have to be sorted
○ Θ(n)

● Bisection search
○ List must be sorted to give correct answer
○ Θ(log n)

82



Bisection search

83



Complexity of searching unsorted list
● Linear search

○ Θ(n)
○ One time search

● Bisection search
○ complexity(sort) + complexity(bisection search)
○ complexity(sort) + Θ(log n)
○ complexity(sort) > Θ(n), always

84



● Each step, for i = 0, 1, ... , len(L)-2, swap L[i], L[i+1] such that smaller is first
● Checks every adjacent pair in list to see if it is sorted
● n steps to put everything in order, building right to left
● Up to n passes

Sorting Methods: Bubble Sort

First Pass

( 5 1 4 2 8 ) –> ( 1 5 4 2 8 )
( 1 5 4 2 8 ) –> ( 1 4 5 2 8 )
( 1 4 5 2 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )

Second Pass

( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )

Third Pass

( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )

85



Sorting Methods: Bubble Sort
● How many steps?
● Each step, how many operations?
● Complexity?

86



Sorting Methods: Bubble Sort
● How many steps? Θ(n)
● Each step, how many operations? Θ(n)
● Complexity? Θ(n2)

87



Sorting Methods: Merge Sort
● Break list in half
● Recursively sort both halves
● Merge the sorted halves

88



● How many levels of the recursive tree?
● How much computation of each level of the tree?
● Complexity?

Sorting Methods: Merge Sort

89



● How many levels of the recursive tree? O(log n)
● How much computation of each level of the tree? O(n)
● Complexity? O(n log n)

Sorting Methods: Merge Sort

90



Questions?

91



Debugging
● Assertions

assert <boolean condition>
assert <boolean condition>, <argument>

● Exception
try:

<code>

except <exception_type>:

<other code to run if try block encounters an exception>

finally:

<always executed after try, else, and except clauses>

92

https://www.tutorialspoint.com/python/assertions_in_python.htm
https://docs.python.org/3/tutorial/errors.html


Assertion Error
x = 3
assert x == 4, 'x is not 4’

throws an AssertionError, stops all further computation

93



Exception Types
● NameError: access a name to a variable 

○ ex. NameError: name 'variable_name' is not defined

● ValueError: concatenating a non-string with a string

● IndexError: accessing beyond the limits of a list 
○ ex. IndexError: list index out of range

● KeyError: attempting to use a key in a dict that doesn't exist
○ ex. KeyError: 'key_name'

● TypeError: converting an inappropriate type
○ ex. TypeError: unsupported operand type(s) for +: 'int' and 'str'

● AttributeError: trying to append to a string
○ ex. AttributeError: 'str' object has no attribute 'append'

94



Input Space Partitioning

Characterizing all types of input a 
program might allow based on its 
specification

95



Input Space Partitioning

Inputs: {bools}, {ints}

Can subdivide each of those sets:
{bools} → {True}, {False}
{ints} → {evens}, {odds}

96



● Classes provide a means of bundling data and functionality together

● They have attributes and methods specific to themselves

class Vehicle(object):
def __init__(self, name):

self.name = name # a variable
def honk(self): # a method

print(self.name, “says HONK”)

Classes

97



Classes
● You can use classes to instantiate objects

>>> my_vehicle = Vehicle("batmobile")
>>> print(my_vehicle.name)
batmobile
>>> my_vehicle.honk()
batmobile says HONK

class Vehicle:
def __init__(self, name):

self.name = name # a variable
def honk(self): # a method

print(self.name, “says HONK”)
98



Classes
● Calling class methods

>>> my_vehicle = Vehicle("batmobile")
>>> print(my_vehicle.name)
batmobile
>>> my_vehicle.honk()
batmobile says HONK
>>> my_vehicle.honk
<bound method Vehicle.honk of <__main__.Vehicle instance at 
0x1010748c0>>

99

class Vehicle:
def __init__(self, name):

self.name = name # a variable
def honk(self): # a method

print(self.name, “says HONK”)



Classes
● Calling class methods

>>> my_vehicle = Vehicle("batmobile")
>>> print(my_vehicle.name)
batmobile
>>> my_vehicle.honk()
batmobile says HONK
>>> my_vehicle.honk
<bound method Vehicle.honk of <__main__.Vehicle instance at 
0x1010748c0>>

What does this mean?

100



Classes
● Calling class methods

>>> my_vehicle = Vehicle("batmobile")
>>> print(my_vehicle.name)
batmobile
>>> my_vehicle.honk()
batmobile says HONK
>>> my_vehicle.honk
<bound method Vehicle.honk of <__main__.Vehicle instance at 
0x1010748c0>>
>>> Vehicle.honk
<unbound method Vehicle.honk>

class Vehicle:
def __init__(self, name):

self.name = name # a variable
def honk(self): # a method

print(self.name, “says HONK”)

101



Classes
● Calling class methods

>>> my_vehicle = Vehicle("batmobile")
>>> print(my_vehicle.name)
batmobile
>>> my_vehicle.honk()
batmobile says HONK
>>> my_vehicle.honk
<bound method Vehicle.honk of <__main__.Vehicle instance at 
0x1010748c0>>
>>> Vehicle.honk
<unbound method Vehicle.honk>

what??

class Vehicle:
def __init__(self, name):

self.name = name # a variable
def honk(self): # a method

print(self.name, “says HONK”)

102



Classes
● Calling class methods

>>> my_vehicle = Vehicle("batmobile")
>>> print(my_vehicle.name)
batmobile
>>> my_vehicle.honk()
batmobile says HONK
>>> my_vehicle.honk
<bound method Vehicle.honk of <__main__.Vehicle instance at 0x1010748c0>>
>>> Vehicle.honk
<unbound method Vehicle.honk>
>>> Vehicle.honk()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unbound method honk() must be called with Vehicle instance as 
first argument (got nothing instead)
>>> Vehicle.honk(my_vehicle)
batmobile says HONK 103



Classes
● Calling class methods

>>> my_vehicle = Vehicle("batmobile")
>>> print(my_vehicle.name)
batmobile
>>> my_vehicle.honk()
batmobile says HONK
>>> my_vehicle.honk
<bound method Vehicle.honk of <__main__.Vehicle instance at 0x1010748c0>>
>>> Vehicle.honk
<unbound method Vehicle.honk>
>>> Vehicle.honk()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unbound method honk() must be called with Vehicle instance as 
first argument (got nothing instead)
>>> Vehicle.honk(my_vehicle)
batmobile says HONK

WHAT

class Vehicle:
def __init__(self, name):

self.name = name # a variable
def honk(self): # a method

print(self.name, “says HONK”)

104



Classes
● You can use classes to instantiate objects

>>> my_vehicle = Vehicle("batmobile")
>>> print(my_vehicle.name)
batmobile
>>> my_vehicle.honk()
batmobile says HONK
>>> my_vehicle.honk -> Bound method: part of a specific object
<bound method Vehicle.honk of <__main__.Vehicle instance at 0x1010748c0>>
>>> Vehicle.honk
<unbound method Vehicle.honk> -> Unbound method: not part of an object
>>> Vehicle.honk()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unbound method honk() must be called with Vehicle instance as 
first argument (got nothing instead) 
>>> Vehicle.honk(my_vehicle)
batmobile says HONK

class Vehicle:
def __init__(self, name):

self.name = name # a variable
def honk(self): # a method

print(self.name, “says HONK”)

-> we get an error because 
there is no data for the 
method to operate on 105


