
Q1. Suppose you have a weighted directed graph and want to find a path between nodes Y and Z with

the smallest total weight. Which of the following are True? Check all that apply.

● If the graph is acyclic and some edges have negative weights, depth-first search finds a correct

solution. (True)

● If all edges have the SAME positive weight, depth-first search guarantees that the first path

found is the shortest path. (False)

● If the graph is acyclic and some edges have negative weights, the first path found by breadth-first

search is the correct solution. (False)

● If all edges in a graph have the SAME positive weight, the first path found by breadth-first search

is the correct solution. (True)

Q2. A Monte Carlo simulation with 1000 trials estimates the value of a constant K. The mean estimate of

K is 5, and the standard deviation of the 1000 estimates is 1. Which of the following can be concluded

given this information? Check all that apply.

● If the simulation were run again, with a probability greater than 0.9 the estimate of K would be

between 3.04 and 6.96. (True)

● With a probability greater than 0.9, the true value of K is between 3.04 and 6.96. (False)

● All values between 3.04 and 6.96 are equally likely. (False)

● If we run the Monte Carlo simulation with 2000 trials, the standard deviation of the 2000

estimates is less than 1 with high probability. (False)

Q3. The following questions all assume sampling is done with replacement. Which of the following are

True? Check all that apply.

● Given a random sample, decreasing the width of the confidence interval always increases the

confidence level. (False)

● A random sample from a population will never have the same mean as the actual population.

(False)

● Assume you have a population of size N. You take one sample of size n. As n increases, the

standard error decreases. (True)

● Assume you have a population of size N. You take M random samples of size n. As n grows, the

distribution of the means of the M samples approaches a normal distribution. (True)

Q4: Which of the following are true? Check all that apply.

● Assume that there are 2*k examples in the data. You train a model and find the mean squared

error on the same data. If the mean squared error for a polynomial of degree k is 0 then the

mean squared error for a polynomial of degree k+1 might be positive. (False)

● If you fit a model to some data, it is possible that the model captures experimental error in the

data. (True)

● You separate data into training and test sets. You train a model on the training set. The mean

squared error of the model on the training data will always be smaller than the mean squared

error of the same model on the testing data. (False)

Q5: Write a function that meets the following specification. Only use libraries as imported for you below.

import random
def prob_ordered(L, n):

""" L is a non-empty list of numbers
n is a positive int 0 < n <=len(L)

Returns an estimate of the probability that if n elements are chosen
at random (with replacement) from L, the n elements are chosen in STRICTLY
increasing order. Use a Monte Carlo simulation with 100000 trials. """
ANSWER
success = 0
ntrials = 100000
for i in range(ntrials):

inorder = True
old = random.choice(L)
for i in range(1,n):

draw = random.choice(L)
if draw <= old:

inorder = False
old = draw

if inorder:
success += 1

return success/ntrials

For example
L = [0,1,2,3,4,5,6,7,8,9]
n = 4
prob_ordered(L, n) # prints 0.02

L = [12,17,3]
n = 1
prob_ordered(L, n) # prints 1.0

L = [5,5,5]
n = 2
prob_ordered(L, n) # prints 0.0

Q6: Write a function that meets the following specification. You may not import any libraries.

def to_take(d, n_allowed):
""" d is a dict of coins that maps an int (representing the value of a coin)

to a positive int (representing how many coins of that value are available)
n_allowed is a non-negative int, representing the total number of coins to take

Returns the maximum total value of taking n_allowed coins from d.
You may mutate d and you can use brute force. """
ANSWER
flattened_items = []
for k, count in d.items():

flattened_items += [k for _ in range(count)]

def to_take_helper(d, n_allowed):
if len(d) == 0 or n_allowed == 0:

return []
Take first item
result_with = [d[0]] + to_take_helper(d[1:], n_allowed - 1)
Do not take first item
result_without = to_take_helper(d[1:], n_allowed)
if result_with == []:

return result_without
elif result_without == []:

return result_with
else:

if sum(result_with) > sum(result_without):
return result_with

else:
return result_without

items_selected = to_take_helper(flattened_items, n_allowed)
return sum(items_selected)

For example:
print(to_take({1:2, 3:1, 4:2}, 0)) # prints 0
print(to_take({1:2, 4:2, 3:1}, 3)) # prints 11

Q7: Write a function that meets the following specification. You may only use libraries as imported for

you below.

import numpy as np

GIVEN THIS FUNCTION -- DO NOT MODIFY
def rSquared(pred, meas):

pred = np.array(pred)
meas = np.array(meas)
est_err = ((pred - meas)**2).sum()
meas_mean = meas.sum()/len(meas)
var = ((meas - meas_mean)**2).sum()
return 1 - est_err/var

WRITE THIS FUNCTION
def find_fit(exp1, exp2, degrees):

""" * degrees is a non-empty list of positive integers.
* exp1 and exp2 represent experiments used to

try and understand the same process.
-exp1, and exp2 are tuples of length 2.
-Each element of each tuple is a list of floats.
-All of the lists are of the same length. The first list in each
tuple contains the independent values of an experiment. The second
list in each tuple contains the corresponding dependent values.

Returns the degree (chosen from degrees) of the polynomial that best
characterizes the single process used to generate the relationship between
the independent values and the dependent values in the experiments,
based on linear regression and the least squares objective function. """

ANSWER
degrees.sort()
rSquared_vals = dict()
for d in degrees:

model_1 = np.polyfit(exp1[0], exp1[1], d)
model_2 = np.polyfit(exp2[0], exp2[1], d)
tot_test_r2 = rSquared(np.polyval(model_1, exp2[0]), exp2[1])
tot_test_r2 += rSquared(np.polyval(model_2, exp1[0]), exp1[1])
rSquared_vals[d] = tot_test_r2/2

best_degree = degrees[0]
best_val = rSquared_vals[degrees[0]]
for d in rSquared_vals:

if rSquared_vals[d] > best_val:
best_degree = d
best_val = rSquared_vals[d]

return best_degree

For example:
exp1 = ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [0, 1,
15, 89, 279, 725, 1428, 2547, 3971, 6079, 10749, 14723, 19325, 28803, 35720, 48941,
73815, 87986, 90323, 137742])

exp2 = ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [8, 3,
23, 83, 259, 623, 1292, 2400, 4096, 6556, 9999, 14636, 20743, 28555, 38422, 50624,
65527, 83517, 104980, 130319])

degrees = [5, 6, 4, 3]

print(find_fit(exp1, exp2, degrees)) # prints 4

Q8: Consider the following class, Example and the code for findKNearest (same as the one in class).

Write the function KNearestLabel according to the specifications below. You may not import any

libraries.

YOU ARE GIVEN THIS CLASS
class Example(object):

def __init__(self, name, feature_vec, label = None):
self.name = str(name)
self.feature_vec = feature_vec
self.label = label

def distance(self, other):
dist = 0
for i in range(len(self.feature_vec)):

dist += abs(self.feature_vec[i] - other.feature_vec[i])**2
return dist**0.5

def get_label(self):
return self.label

def __str__(self):
return self.name + ':' + str(self.feature_vec) + ':' + str(self.label)

YOU ARE GIVEN THIS FUNCTION, SAME AS IN CLASS
def findKNearest(example, exampleSet, k):

kNearest, distances = [], []
#Build lists containing first k examples, and their distances
for i in range(k):

kNearest.append(exampleSet[i])
distances.append(example.distance(exampleSet[i]))

maxDist = max(distances) #Get maximum distance
#Look at examples not yet considered
for e in exampleSet[k:]:

dist = e.distance(example)
if dist < maxDist:

maxIndex = distances.index(maxDist)
kNearest[maxIndex] = e
distances[maxIndex] = dist
maxDist = max(distances)

return kNearest, distances

IMPLEMENT THIS FUNCTION
def KNearestLabel(training, example, k):

""" training is a list of elements of type Example
example is a value of type Example
k is an odd int > 0

Uses k-nearest neighbors (with Euclidean distance) to assign a label
of True or False for `example` based on the training data in `training`.
Returns a Boolean representing the predicted label of `example`. """
ANSWER
nearest, distances = findKNearest(example, training, k)
true_count, false_count = 0.0, 0.0
for i in range(len(nearest)):

if nearest[i].get_label() == True:
true_count += 1

else:
false_count += 1

if true_count > false_count:
return True

elif false_count > true_count:

return False
else:

raise ValueError

For example:
ex1 = Example('ex1', [1], True)
ex2 = Example('ex2', [1], True)
ex3 = Example('ex3', [1], True)
ex4 = Example('ex4', [0], False)
examples = [ex1, ex2, ex3, ex4]

ex0 = Example('test', [0.01])
print(KNearestLabel(examples, ex0, 3)) # prints True
print(KNearestLabel(examples, ex0, 1)) # prints False

