
Microquiz 3

1.

def f(): ## deterministic
 random.seed(0)
 L = []
 for i in range(10000000):
 r = random.random()
 if r < 0.00001:
 L.append(i)
 return L

def g(): ## stochastic
 L = []
 random.seed()
 for i in range(10000000):
 r = random.random()
 if r < 0.00001:
 L.append(i)
 return L

def h(): ## deterministic
 r = random.randint(1,10)
 if r == 0:
 print("Done")

2.
Which of the following are implied by the central limit theorem? Choose all
that apply.

 Given a sufficiently large set of samples drawn randomly from the same
population, the means of the samples (the sample means) will be
approximately uniformly distributed.

 Given a sufficiently large set of samples drawn randomly from the
same population, the means of the samples (the sample means) will be
approximately normally distributed.

 Given a sufficiently large set of samples drawn randomly from the
same population, the mean of the sample means will be close to the mean
of the population.

 Given a sufficiently large set of samples drawn randomly from the same
population, the variance of the sample means will be close to the
variance of the population.

3.
John wrote a Monte Carlo simulation to estimate the value of the constant K.
He ran the simulation 1000 times. The mean estimate of the value of K was 11,
and the standard deviation was 2. Which of the following conclusions can be
drawn from this? Check all that apply.

 If the simulation were run again, with a probability greater than 0.9
the estimate of K would be between 9 and 13.

 With a probability of approximately 0.9, the true value of K is between
11 and 13.

 With a probability of approximately 0.95, the true value of K is between
11 and 13.

4.
Assume the following classes are given, based on the Drunk class shown in
lecture. The image shows a simulation of a drunk walking from the origin once.
The simulation is repeated for 3 to 10 steps.

class ADrunk(Drunk):
 def takeStep(self):

 stepChoices = [(0.0,-0.5), (0.0,-0.5),
 (-0.5,0.0), (-0.5,0.0)]
 return random.choice(stepChoices)

class BDrunk(Drunk):
 def takeStep(self):
 stepChoices = [(0.0,0.5), (0.0,0.5),
 (0.5,0.0), (0.5,0.0)]
 return random.choice(stepChoices)

 It is not possible to tell which of the lines was generated by ADrunk or
BDrunk.

5.

def ta_activities(trials, grading, teaching, attending):
 '''
 trials: integer, number of trials to run
 grading: probability a TA is grading, 0 <= p <= 1
 teaching: probability a TA is teaching, 0 <= p <= 1
 attending: probability a TA is attending class, 0 <= p <= 1

 Runs a Monte Carlo simulation 'trials' times. Returns: a tuple of

(1) a float representing the mean num of days it takes to have a day in
 which all 3 actions take place

(2) the total width of the 95% confidence interval around that mean
 (using stddev)
 '''
 days_list = []
 for trial in range(trials):
 days = 1
 while (random.random() > grading) or \
 (random.random() > teaching) or \
 (random.random() > attending):
 days += 1
 days_list.append(days)
 (mean, std) = get_mean_and_stddev(days_list)
 return (mean, 1.96*std*2)

