
def find_combination(choices, total):
 """
 choices: a non-empty numpy.array of ints
 total: a positive int

 Returns result, a numpy.array of length len(choices)
 such that
 * each element of result is 0 or 1
 * sum(result*choices) == total
 * sum(result) is as small as possible
 In case of ties, returns any result that works.
 If there is no result that gives the exact total,
 pick the one that gives sum(result*choices) closest
 to total without going over.
 """
 counter = 1
 result = np.array([0 for i in range(len(choices))])
 while len(bin(counter)[2:]) <= len(choices):
 a = np.array(list(map(int, bin(counter)[2:].zfill(len(choices)))))

 if sum(a * choices) <= total:
 if total - sum(a * choices) < total - sum(result * choices):
 result = a
 elif total - sum(a * choices) == total - sum(result * choices):
 if sum(a) < sum(result):
 result = a
 counter += 1
 return result

#ALTERNATE SOLUTION

def find_combination(choices, total):
 """
 choices: a non-empty list of ints
 total: a positive int

 Returns result, a numpy.array of length len(choices)
 such that
 * each element of result is 0 or 1
 * sum(result*choices) == total
 * sum(result) is as small as possible
 In case of ties, returns any result that works.
 If there is no result that gives the exact total,
 pick the one that gives sum(result*choices) closest
 to total without going over.
 """
 if choices == [] or total == 0:
 result = np.array([0] * len(choices))
 elif choices[0] > total: #cannot afford current item
 # Do not take first item
 result = np.concatenate([[0], find_combination(choices[1:],
total)]).astype('int')
 else:
 # Take first item
 result_with = np.concatenate([[1], find_combination(choices[1:], total -
choices[0])]).astype('int')
 total_value_with = sum(choices * result_with)

 # Do not take first item
 result_without = np.concatenate([[0], find_combination(choices[1:],
total)]).astype('int')
 total_value_without = sum(choices * result_without)

 # Choose better branch
 if total_value_with > total_value_without:
 result = result_with
 elif total_value_with < total_value_without:
 result = result_without
 else:

 if sum(result_with) < sum(result_without):
 result = result_with
 else:
 result = result_without
 return result

def lecture_activities(N, aLecture):
 '''
 N: integer, number of trials to run
 aLecture: Lecture object

 Runs a Monte Carlo simulation N times.
 Returns: a tuple of (1) a float representing the mean number of
 days it takes to have a day in which all 3 actions take place
 (2) the total width of the 95% confidence interval around that mean
 '''
 days_list = []
 for trial in range(N):
 days = 1
 while (random.random() > aLecture.get_listen_prob()) or \
 (random.random() > aLecture.get_sleep_prob()) or \
 (random.random() > aLecture.get_fb_prob()) :
 days += 1
 days_list.append(days)
 (mean, std) = get_mean_and_std(days_list)
 return (round(mean, 3), round(1.96*std*2, 3))

def greedySum(L, s):
 current_sum = 0.0
 multiples = []
 for val in L:
 # find the largest multiple
 multiple = int((s - current_sum) / val)
 current_sum += (val * multiple)
 multiples.append(multiple)

 if current_sum != s:
 return "no solution"
 else:
 return sum(multiples)

