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Using Monte Carlo simulation to build 
models
◦ The world is mostly stochastic, so draw 

multiple samples
◦ Useful tool even when randomness not 

present
◦ Estimate reliability of simulation results

Understanding populations
◦ Cannot examine all members
◦ Rely on sampling to infer information
◦ Estimate confidence in inferences
◦ Central Limit Theorem lets us use a single 

sample, and still assert inferences with 
specific confidence levels

Have focused on estimating variables 
and properties (e.g., mean) of 
distributions

Where Have We Been?
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Conduct an experiment to gather data
◦ Physical (e.g., in a physics lab)
◦ Social (e.g., questionnaires)

Use theory to generate some questions about data
◦ Physical (e.g., gravitational fields)
◦ Social (e.g., people give inconsistent answers)

Design a computation to help answer questions about 
data

All the time remembering that the data will be noisy!

Let’s look at a spring

Statistics Meets Experimental Science
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One Kind of Spring
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Another Kind of Spring
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This Kind of Spring
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Linear spring: amount of force needed to 
stretch or compress spring is linear in the 
distance the spring is stretched or 
compressed, up to some maximum force

Each spring has a spring constant, k, that 
determines how much force is needed

Newton = force to accelerate 1 kg mass 1 meter per second per second



Robert Hooke (1635-1703)
◦ Discovered law of elasticity
◦ Led to invention of balance spring, which led 

to first accurate watch
◦ Huge believer in running experiments and 

then building models
◦ “The truth is, the Science of Nature has been 

already too long made only a work of the 
Brain and the Fancy: It is now high time that 
it should return to the plainness and 
soundness of Observations on material and 
obvious things.”

Hooke’s Law
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F = kd

How much does a rider have to weigh 
to compress spring 1cm?

Hooke’s Law
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𝐹𝐹 = 0.01𝑚𝑚 ∗ 35,000𝑁𝑁/𝑚𝑚

𝐹𝐹 = 350𝑁𝑁 𝐹𝐹 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎

𝐹𝐹 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 9.8𝑚𝑚/𝑠𝑠2
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 9.8𝑚𝑚/𝑠𝑠2=350𝑁𝑁

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
350𝑁𝑁

9.81𝑚𝑚/𝑠𝑠2

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 35.68𝑘𝑘g

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
350𝑘𝑘𝑘𝑘

9.81



F = kδ

k = F/δ

k =9.81*m/δ

Finding k

6.0002 LECTURE 9 9

By Yapparina (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-
sa/3.0)], via Wikimedia Commons
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Some Data
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Mass (kg) Distance (m)
0.1 0.0865
0.15 0.1015
0.2 0.1106
0.25 0.1279
0.3 0.1892
0.35 0.2695
0.4 0.2888
0.45 0.2425
0.5 0.3465
0.55 0.3225
0.6 0.3764
0.65 0.4263
0.7 0.4562
0.75 0.4502
0.8 0.4499
0.85 0.4534
0.9 0.4416
0.95 0.4304
1.0 0.437

m

m

m



Taking a Look at the Data
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A reminder about numpy arrays:
• Converts a list into a linear data structure
• Can treat arrays algebraically; e.g., if a and b are arrays, then:

• a*2 multiplies each element of a by 2
• a + 3 adds 3 to each element of a
• a – b subtracts each element of b from corresponding element of a
• a*b multiplies each element of a by corresponding element of b



Taking a Look at the Data
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We’ve run an experiment
We can relate observations to 
measurements (distance d vs. 
force F)
Theory predicts a relationship 
between observations and 
measurements (F = -kd)
Can we use these 
measurements to determine k 
and to validate model?
Notice that points don’t lie on 
a line. Experiments are noisy!

What Can We Do With This Data?
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When we fit a curve to a set of data, we are finding a 
fit that relates an independent variable (the mass or 
force) to an estimated value of a dependent variable 
(the distance)

To decide how well a curve fits the data, we need a 
way to measure the goodness of the fit – called the 
objective function

Once we define the objective function, we also need 
an algorithm to find the curve that minimizes it

Theory says find a line such that some function of the 
distances from the line to the measured points is 
minimized. The line that best fits the data.

Fitting Curves to Data
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Measuring Distance
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X

Y
P

Which should we choose?

Vertical distance because want to predict dependent 
Y value for every given independent X value, and 
vertical distance measures error in that prediction



Look familiar?
◦ This is variance times number of observations

Least Squares Objective Function
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To minimize this objective function, want to find a 
curve for the predicted observations that leads to 
minimum value of sum of squared differences 

Need to make a choice on kinds of curves – we will 
use polynomials of one variable

Need to find the best curve – use linear regression to 
find a polynomial representation for the predicted 
model that minimizes the objective function

Solving for Least Squares
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Definition: 0 or sum of finite number of non-
zero terms
Each term of the form cxp

◦ c, the coefficient, a real number
◦ p, the degree of the term, a non-negative 

integer

The degree of the polynomial is the largest 
degree of any term
Examples
◦ Line:              ax + b
◦ Parabola:     ax2 + bx + c
◦ Cubic:           ax3 + bx2 + cx + d
◦ Quartic:       ax4 + bx3 + cx2 + dx + e

Aside: Polynomials with One Variable (x)
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Simple example:
◦ Use a degree-one polynomial, y = ax+b, as model of data 

(best fitting line)

Want to find values of a and b such that

is minimized, where x[i] is the ith data point, and 
observed[i] is the corresponding measured value.  

Solving for Least Squares
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For linear case

polynomial 𝑎𝑎𝑎𝑎 + 𝑏𝑏 is predicting y values for all the x
values in our experiment, such that sum squared 
difference of predicted values and corresponding 
observed values is minimized

A linear regression problem

Many algorithms for doing this, including one similar to 
Newton’s method (which you saw in 6.0001)

Solving for Least Squares
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You Could Write Your Own
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https://integratedmlai.com/least-squares-
with-polynomial-features-fit-using-pure-
python-without-numpy-or-scipy/



Good news is that numpy provides a builtin function to 
find these polynomial fits

np.polyfit(observedX, observedY, n)

finds coefficients of a polynomial, of degree n, that 
provides a best least squares fit for the observed data

◦ n = 1 – best line y = ax + b
◦ n = 2 – best parabola y = ax2 + bx + c
◦ n = 3 – best cubic y = ax3 + bx2 + cx + d

polyFit
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Using polyfit
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plotData

Remember Hooke:
F = kd

Here plotting d = aF
So k = 1/a



Visualizing the Fit
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Version Using polyval
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polyval will 
fit model 
to xVals for 
any order 
of model



Ran an experiment to gather data
Theory predicts relationship between 
measurements (displacements) and 
experimental parameters (masses or 
forces)
Linear regression lets us fit best model 
(line in our case) to observed data
◦ Best here means minimize sum squared 

error between observed and predicted 
values

So, let’s apply this idea to other data…

Quick Summary So Far
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Another Experiment
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Fit a Line
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Let’s Try a Higher-degree Model
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model2 = np.polyfit(xVals, yVals, 2)
plt.plot(xVals, np.polyval(model2, xVals),

'r--', label = 'Quadratic Model')

Note that this is still an example of linear regression, 
even though we are not fitting a line to the data (in this 
case we are finding the best parabola)
• Objective function depends linearly (additively) on 

unknowns, which are the coefficients of the terms of 
the polynomial

�
𝑖𝑖=0

𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 −1

(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖 − 𝑎𝑎 ∗ 𝑥𝑥 𝑖𝑖 2 − 𝑏𝑏 ∗ 𝑥𝑥 𝑖𝑖 − 𝑐𝑐)



Quadratic Appears to be a Better Fit
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How good are they relative to each other?

How good are they in an absolute sense?

How Good Are These Fits?
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Fit is a function from the independent variable to the 
dependent variable

Given an independent value, provides an estimate of 
the dependent value

Which fit provides better estimates?

Since we found fit by minimizing mean square error, 
could just evaluate goodness of fit by looking at that 
error

Relative to Each Other
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Comparing Mean Squared Error
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Ave. mean square error for linear model = 9372.73078965
Ave. mean square error for quadratic model = 1524.02044718



Mean square error useful for comparing two different 
models for the same data

Is it also useful for getting a sense of absolute goodness of 
fit?
◦ Is 1524 good?

Hard to know – no bound on values; not scale independent
◦ For example, if we double the masses, get double the error 

Instead we use coefficient of determination, R2,

In an Absolute Sense
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Error in estimates

Variability in 
measured data

yi are measured values
pi are predicted values
µ is mean of measured values



If You Prefer Code
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def rSquared(observed, predicted):
error = ((predicted - observed)**2).sum()
meanError = error/len(observed)
return 1 - (meanError/np.var(observed))

• Numerator is sum of squared errors
• Dividing by number of samples gives average sum-squared-error
• Denominator is variance times number of samples
• So mean SSE/variance is same as R2 ratio  



By comparing the estimation errors (the numerator) 
with the variability of the original values (the 
denominator), R2 is intended to capture the proportion 
of variability in a data set that is accounted for by the 
statistical model provided by the fit

Always between 0 and 1 when fit generated by a linear 
regression and tested on training data
◦ If R2 = 1, the model explains all of the variability in the 

data. 
◦ If R2 = 0, there is no relationship between the values 

predicted by the model and the actual data. 
◦ If R2 = 0.5, the model explains half the variability in the 

data.

R2
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Testing Goodness of Fits
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How Well Do Fits Explain Variance?
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Saw that linear fit was poor – both visually and 
through R2 measure

Saw that quadratic fit was better – again both visually 
and through R2 measure

What about fitting higher order polynomials to data?
◦ Degree 4?
◦ Degree 8?
◦ Degree 16?

Can We Do Better?
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Can We Get a Tighter Fit?
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Does this mean 
that a 16th order 
polynomial is the 
best fit for the 
data?



Looks like an order 16 fit is really good – so should we 
just use this as our model?
◦ To answer, need to ask – why build models in first place?

 1) Help us understand process that generated the data
◦ E.g., the properties of a particular linear spring

 2) Help us make predictions about out-of-sample data
◦ E.g., predict the displacement of a spring when a force is 

applied to it
◦ E.g., predict the effect of treatment on a patient
◦ E.g., predict the outcome of an election

A good model helps us do both of these things

Does Tightest = Best?

6.0002 LECTURE 9 41



How Mystery Data Was Generated
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If data was generated by 
quadratic, why was 16th order 
polynomial the “best” fit?

Because it fit the noise.

Zero mean, Gaussian noise



Is it just luck that we got a “better” fit on training data 
with higher order model?

What happens when we increase order of polynomial 
during training?
◦ Can we get a worse fit to training data?

If extra term is useless, coefficient will merely be zero

But if data is noisy, can fit the noise rather than the 
underlying pattern in the data
◦ May lead to a “better” R2 value, but not really a “better” 

fit
◦ Might yield terrible predictions for unseen data

Increasing the Complexity
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