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Where Have We Been?

=Using Monte Carlo simulation to build
models

o The world is mostly stochastic, so draw
multiple samples

o Useful tool even when randomness not
present

o Estimate reliability of simulation results

="Understanding populations
o Cannot examine all members
o Rely on sampling to infer information
o Estimate confidence in inferences

o Central Limit Theorem lets us use a single o
sample, and still assert inferences with A A B
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Statistics Meets Experimental Science

="Conduct an experiment to gather data
o Physical (e.g., in a physics lab)
o Social (e.g., questionnaires)

=Use theory to generate some questions about data
o Physical (e.g., gravitational fields)
o Social (e.g., people give inconsistent answers)

=Desigh a computation to help answer questions about
data

=All the time remembering that the data will be noisy!

"l et’s look at a spring
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One Kind of Spring
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Another Kind of Spring
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This Kind of Spring

Linear spring: amount of force needed to
stretch or compress spring is linear in the

distance the spring is stretched or
compressed, up to some maximum force

Each spring has a spring constant, k, that
determines how much force is needed

k~35000N/m

Newton = force to accelerate 1 kg mass 1 meter per second per second
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Hooke’s Law

="Robert Hooke (1635-1703)
o Discovered law of elasticity

o Led to invention of balance spring, which led
to first accurate watch

o Huge believer in running experiments and
then building models

o “The truth is, the Science of Nature has been
already too long made only a work of the
Brain and the Fancy: It is now high time that
it should return to the plainness and
soundness of Observations on material and
obvious things.”
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Hooke’s Law

°F = kd

"How much does a rider have to weigh
to compress spring 1cm?

F =0.01m = 35,000N/m

F = 350N F = mass * acc

F = 9.8m/s?
mass * 9.8m/s*=350N mass * 9.8m/s

350N
Mass =9 81m/s?

_ 350kg
mass = 981

mass =~ 35.68kg

/ '-.,, :" A o - \
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Finding k

oF = kS
ok = F/S
"k =9.81*m/d

By Yapparina (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-
sa/3.0)], via Wikimedia Commons
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Some Data

Mass (kg) Distance (m

0.1 0.0865
0.15 0.1015
0.2 0.1106
0.25 0.1279
0.3 0.1892
0.35 0.2695
0.4 0.2888
0.45 0.2425
0.5 0.3465
0.55 0.3225
0.6 0.3764
0.65 0.4263
0.7 0.4562
0.75 0.4502
0.8 0.4499
0.85 0.4534
0.9 0.4416
0.95 0.4304

1.0 0.437
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Taking a Look at the Data

def plotData(fileName):
xVals, yVals = getData(fileName)
xVals = np.array(xVvVals)
yVals = np.array(yvals)
xVals = xValsx9.81
plt.plot(xVals, yvals, 'bo’,

label = 'Measured displacements')

labelPlot ()

A reminder about numpy arrays:
 Converts a list into a linear data structure
 Cantreat arrays algebraically; e.g., if a and b are arrays, then:
 a*2 multiplies each element of a by 2
e a+3adds3toeachelement of a
e a-—bsubtracts each element of b from corresponding element of a
 a*b multiplies each element of a by corresponding element of b
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Taking a Look at the Data
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What Can We Do With This Data?

=We've run an experiment

=*\We can relate observations to
measurements (distance d vs.

0.50

force F) 5%

=Theory predicts a relationship £
between observations and :
measurements (F = -kd) g

=Can we use these
measurements to determine k
and to validate model?

=*Notice that points don’t lie on
a line. Experiments are noisy!
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Fitting Curves to Data

"When we fit a curve to a set of data, we are finding a
fit that relates an independent variable (the mass or
force) to an estimated value of a dependent variable
(the distance)

=To decide how well a curve fits the data, we need a
way to measure the goodness of the fit — called the
objective function

"Once we define the objective function, we also need
an algorithm to find the curve that minimizes it

"Theory says find a line such that some function of the
distances from the line to the measured points is
minimized. The line that best fits the data.
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Measuring Distance

Which should we choose?

//ertical distance because want to predict dependent

Y value for every given independent X value, and
vertical distance measures error in that prediction
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Least Squares Objective Function

len(observed )1
Z (observed|i]— predicted|i])’

i=0

= ook familiar?
o This is variance times number of observations
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Solving for Least Squares

len(observed )1
(observed[i]|— predicted[i])’

i=0

*To minimize this objective function, want to find a
curve for the predicted observations that leads to
minimum value of sum of squared differences

*Need to make a choice on kinds of curves — we will
use polynomials of one variable

"Need to find the best curve — use linear regression to
find a polynomial representation for the predicted
model that minimizes the objective function
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Aside: Polynomials with One Variable (x)

=Definition: 0 or sum of finite number of non-
zero terms

=Each term of the form cx? ‘ /

o ¢, the coefficient, a real number

o p, the degree of the term, a non-negative :
integer -

"The degree of the polynomial is the largest

degree of any term /\/
sExamples

00000
=5

o Line: ax+b
o Parabola: ax?2+bx+c
o Cubic: ax3+bx2+cx+d

o Quartic: ax*+bx3+cx2+dx+e
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Solving for Least Squares

len(observed )1
(observed[i]|— predicted[i])’
i=0
sSimple example:

o Use a degree-one polynomial, y = ax+b, as model of data
(best fitting line)

=\Want to find values of a and b such that
len(observed)—1

(observed[i]—a* x[i]— b)’

i=0

is minimized, where x/[i] is the it" data point, and
observed]i] is the corresponding measured value.

6.0002 LECTURE 9




Solving for Least Squares

=*For linear case

len(observed)—1
(observed[i]—a* x[i]— b)’
i=0
polynomial ax + b is predicting y values for all the x
values in our experiment, such that sum squared

difference of predicted values and corresponding
observed values is minimized

=A linear regression problem

*Many algorithms for doing this, including one similar to
Newton’s method (which you saw in 6.0001)
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You Could Write Your Own

Pure Python Least Squares Fit with Two 2nd Order Inputs

Least Squares
with Polynomial
Features Fit
using Pure
Python without

¥ 'u"afu-r:s.

https://integratedmlai.com/least-squares-
with-polynomial-features-fit-using-pure-
python-without-numpy-or-scipy/
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polyFit

"Good news is that numpy provides a builtin function to
find these polynomial fits

*np.polyfit(observedX, observedY, n)

finds coefficients of a polynomial, of degree n, that
provides a best least squares fit for the observed data

cn=1-Dbestline y=ax+b
o n =2 — best parabola y=ax?+bx+c
°n =3 — best cubic y=ax>+bx?+cx+d
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Using polyfit

def fitData(fileName):

plotData -

xVals, yVals = getData(fileName)

xVals = np.array(xVals)
yVals = np.array(yVals)
xVals = xValsx9.81

plt.plot(xvals, yvals, 'bo’,

label = 'Measured points')

labelPlot()

a,b = np.polyfit(xvals, yvVals, 1)
estYVals = axnp.array(xVals) + b

print('a =', a, 'b =", b)
plt.plot(xvals, estYvals, 'r’,

label = 'Linear fit, k = '

+ str(round(1/a, 5)))

plt.legend(loc = 'best') s\\\\\\\

Remember Hooke:
F = kd

Here plotting d = aF

Sok=1/a
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Visualizing the Fit
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Version Using polyval

def fitDatal(fileName):
xVals, yVals = getData(fileName)

xVals = np.array(xVals)
yVals = np.array(yVals)
xVals = xValsx9.81
plt.plot(xvals, yvals, 'bo'

label = 'Measured points"') _
labelPlot() polyval will
model = np.polyfit(xvals, yvals, 1) | |/tmodel
estYVals = np.polyval(model, xVals) to xVals for
plt.plot(xVals, estyvals, 'r', 2?:’;:;;(

label = 'Linear fit, k =
+ str(round(1/model[@], 5)))
plt.legend(loc = 'best')
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Quick Summary So Far

"Ran an experiment to gather data

"Theory predicts relationship between
measurements (displacements) and
experimental parameters (masses or
forces)

"linear regression lets us fit best model
(line in our case) to observed data

o Best here means minimize sum squared
error between observed and predicted
values

=So, let’s apply this idea to other data...
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Another Experiment

350 Mysterly Data
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Fit a Line

350 Mysterly Data
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Let’s Try a Higher-degree Model

model2 = np.polyfit(xVals, yVa1s,(:>
plt.plot(xVals, np.polyval(model2, xVals),
'r--"', label = '"Quadratic Model')

Note that this is still an example of linear regression,

even though we are not fitting a line to the data (in this

case we are finding the best parabola)

e Objective function depends linearly (additively) on
unknowns, which are the coefficients of the terms of
the polynomial

len(observed)—1

Z (observed[i] —a * x[i]* — b = x[i] — ¢)

1=0
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Quadratic Appears to be a Better Fit
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How Good Are These Fits?
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"How good are they relative to each other?

"How good are they in an absolute sense?
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Relative to Each Other

*Fit is a function from the independent variable to the
dependent variable

"Given an independent value, provides an estimate of
the dependent value

*Which fit provides better estimates?

=Since we found fit by minimizing mean square error,
could just evaluate goodness of fit by looking at that
error
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Comparing Mean Squared Error

def aveMeanSquareError(data, predicted):
error = 0.0
for i in range(len(data)):
error += (data[i] - predicted[i])*x2
return error/len(data)

estYVals = np.polyval(modell, xVals)

print('Ave. mean square error for linear model =',
aveMeanSquareError(yvals, estYVals))

estYVals = np.polyval(model2, xVals)

print('Ave. mean square error for quadratic model =',
aveMeanSquareError(yvals, estYVals))

Ave. mean square error for linear model = 9372.73078965
Ave. mean square error for quadratic model = 1524.02044718
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In an Absolute Sense

"Mean square error useful for comparing two different
models for the same data

"|s it also useful for getting a sense of absolute goodness of
fit?
° |s 1524 good?

"Hard to know — no bound on values; not scale independent
o For example, if we double the masses, get double the error

=|Instead we use coefficient of determination, R?,

_ iy — pi)2<— Error in estimates

2
R =1 >
yi are measured Values Z[(yl T M) h Variability in
p, are predicted values measured data
1 is mean of measured values
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If You Prefer Code

2i(yi — pi)?
2.i(yi — 1)?

R*=1-

def rSquared(observed, predicted):
error = ((predicted - observed)**2).sum()
meanError = error/len(observed)
return 1 - (meanError/np.var(observed))

Numerator is sum of squared errors

Dividing by number of samples gives average sum-squared-error
 Denominator is variance times number of samples

So mean SSE/variance is same as R? ratio
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R2

"By comparing the estimation errors (the numerator)
with the variability of the original values (the
denominator), R? is intended to capture the proportion
of variability in a data set that is accounted for by the
statistical model provided by the fit

"Always between 0 and 1 when fit generated by a linear
regression and tested on training data

o If R? = 1, the model explains all of the variability in the
data.

o If R? =0, there is no relationship between the values
predicted by the model and the actual data.

o If R? = 0.5, the model explains half the variability in the
data.
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Testing Goodness of Fits

def

def

genFits(xVals, yVals, degrees):

models = []

for d in degrees:
model = np.polyfit(xvals, yvals, d)
models.append(model)

return models

testFits(models, degrees, xVals, yVals, title):
plt.plot(xVvals, yvals, 'o', label = 'Data')
for i in range(len(models)):
estYVals = np.polyval(models[i], xVals)
error = rSquared(yVals, estYVals)
plt.plot(xVals, estYVals,
label = 'Fit of degree '\
+ str(degrees[i])\
+ ', R2="4+ str(round(error, 5)))
plt.legend(loc = 'best')
plt.title(title)
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How Well Do Fits Explain Variance?
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Can We Do Better?

=Saw that linear fit was poor — both visually and
through R? measure

=Saw that quadratic fit was better — again both visually
and through R? measure

*What about fitting higher order polynomials to data?
°c Degree 47
°c Degree 8?
o Degree 167
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Can We Get a Tighter Fit?
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Does Tightest = Best?

= ooks like an order 16 fit is really good — so should we
just use this as our model?

> To answer, need to ask — why build models in first place?

= 1) Help us understand process that generated the data
o E.g., the properties of a particular linear spring

= 2) Help us make predictions about out-of-sample data

o E.g., predict the displacement of a spring when a force is
applied to it

o E.g., predict the effect of treatment on a patient
o E.g., predict the outcome of an election

=" A good model helps us do both of these things
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How Mystery Data Was Generated

def genNoisyParabolicData(a, b, c, xVals, fName):
yVals = []
for x in xVals:
theoreticalVal = a%xxk%2 + bkx + C
yVals.append(theoreticalval + random.gauss(@, 35))

f = open(fName, 'w') \

f.write( 'x y\n') . Gauss :

fﬂr i il'l range ( 1en(yva].5) ) : ero mean, Gaussian noise
f.write(str(yvals[i]) + ' ' + str(xvals[i]) + '\n')

f.close()

xVals = range(-10, 11, 1)

a, b, c=3, 0, 0

genNoisyParabolicData(a, b, c, xVals, ‘'parabolal.txt')
genNoisyParabolicData(a, b, c, xVals, 'parabola2.txt"')

If data was generated by
quadratic, why was 16" order Because it fit the noise.
polynomial the “best” fit?
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Increasing the Complexity

"|s it just luck that we got a “better” fit on training data
with higher order model?

*What happens when we increase order of polynomial
during training?
o Can we get a worse fit to training data?

"|f extra term is useless, coefficient will merely be zero

=But if data is noisy, can fit the noise rather than the
underlying pattern in the data

> May lead to a “better” R? value, but not really a “better”
fit
> Might yield terrible predictions for unseen data
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