PROGRAM EFFICIENCY

(download slides and .py files to follow along!)

6.0001 LECTURE 9

TODAY

= Formally evaluate programs

= Efficiency in time
= Orders of growth, big Oh notation

= Examples of different complexity cases

6.0001 LECTURE 9 p

Assigned Reading

= Today L Introduction to
> Chapter 9 ~Computation
©10.1-10.2 * <and Programming

= Monday |
. 10.3 / V\fithAllcatmn torUntj;r ahfllné Data

o Chapter 11

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised 083117.pdf

6.0001 LECTURE 1 3

EFFICIENCY IS IMPORTANT

= Separate time and space efficiency of a program

= Tradeoff between them: can use up a bit more
memory to store values for quicker lookup later

= Challenges in understanding efficiency
o A program can be implemented in many different ways
> You can solve a problem using only a handful of different

algorithms

= Want to separate choice of implementation from
choice of more abstract algorithm

6.0001 LECTURE 9 4

EVALUATING ALGORITHMS

" Focus on idea of counting operations in an algorithm, but

not worry about small variations in implementation

= Focus on how algorithm performs when size of problem
gets arbitrarily large

" Look at the worst case asymptotic run time of a program,
as the input grows to a large value

6.0001 LECTURE 9 5

COMPLEXITY CLASSES
ORDERED LOW TO HIGH

O (1) : constant — |
O(log n) |/<— logarithmic

l/ 3 1
O (n) : linear —

|

O(n log n): I « loglinear

!
O (n°) : polynomial — |

~c.©
C\SO(\S’(&(\& .
¢ O (c™) : z +<— exponential
6.0001 LCTURE9

CONSTANT
COMPLEXITY

CONSTANT COMPLEXITY

= Complexity independent of inputs

= Very few interesting algorithms in this class, but can
often have pieces that fit this class

= Can have loops or recursive calls, but number of
iterations or calls independent of size of input

6.0001 LECTURE 10 8

CONSTANT COMPLEXITY:
EXAMPLE 1

" Addxtoy
def add(x, v):

return x+y

= O(1)

CONSTANT COMPLEXITY:
EXAMPLE 2

= Multiply x by y

def mul (x, vVv):
tot = 0
for 1 1n range(y) :
tot += X

return tot

= complexity in terms of x: O(1)

= complexity in terms of y: O(y)

LINEAR
COMPLEXITY

LINEAR COMPLEXITY

= Simple iterative loop algorithms

" Loops must be a function of input
" Linear search a list to see if an element is present

= Recursive functions with one recursive call and
constant overhead for call

6.0001 LECTURE 10

_INEAR COMPLEXITY:
-XAMPLE 1

= Add characters of a string, assumed to be composed
of decimal digits

def add digits(s):
val = 0

for ¢ 1n s:

val += 1int (c)

return val
= O(len(s))

= O(n) where n is len(s)

_INEAR COMPLEXITY:
- XAMPLE 2

" Loop to find the factorial of a number
def fact iter(n):

prod = 1
for 1 1n range(l, n+1):
prod *= 1
return prod
* Number of times around loop is n
= Number of operations inside loop is a constant

= Overall just O(n)

_INEAR COMPLEXITY:
-XAMPLE 3

def fact recur(n):
""" o 3ssume n >= (0 """
1f n <= 1:
return 1
else:
return n*fact recur(n - 1)

= Computes factorial recursively

" If you time it, notice that it runs a bit slower than
iterative version due to function calls

= O(n) because the number of function calls is linear in n

" |terative and recursive factorial implementations are
the same order of growth

6.0001 LECTURE 10

LINEAR SEARCH
ON UNSORTED LIST

def linear search (L, e):

N
found = False a“ﬂiﬁwﬂx
for 1 1n range(len (L)) : ec&‘)Q <(V© 6065(\

L £ == 1 . 0 (6\(\% QO " po®
1f e == L[1]: @ % xC
found = True wﬁwx,d
o C
return found SN

= Must look through all elements to decide it’s not there
= O(len(L)) for the loop * O(1) to test if e == L][i]

= Overall complexity is O(n) — where n is len(L)

= O(len(L))

6.0001 LECTURE 9

LINEAR SEARCH
ON SORTED LIST

def search (L, e):
for 1 in L:
1f 1 == e:
return True
1f 1 > e:
return False
return False

= Must only look until reach a number greater than e
= O(len(L)) for the loop * O(1) to test if e == L][i]

= Overall complexity is O(n) — where n is len(L)

= O(len(L))

POLYNOMIAL
COMPLEXITY

POLYNOMIAL COMPLEXITY
(OFTEN QUADRATIC)

= Most common polynomial algorithms are quadratic,
i.e., complexity grows with square of size of input

= Commonly occurs when we have nested loops or
recursive function calls

QUADRATIC COMPLEXITY:
EXAMPLE 1

def g(n):
mwwwmw aS Sume n >: O mwiwww
x =0
for 1 in range(n) :
for jJ in range(n):
X += 1
return x

= Computes n? very inefficiently
* When dealing with nested loops, look at the ranges

= Nested loops, each iterating n times
= O(n?)

QUADRATIC COMPLEXITY:
EXAMPLE 2

= Find if L1 is a subset of L2, if all elementsin L1 are in L2
def 1s subset(Ll, L2):
for el in L1:

matched = False
for e2 1n L2:
1f el == e2:
matched = True
break
1f not matched:
return False

return True

QUAD
EXAM

RATIC COMPLEXITY:

PLE 2

def is subset (L1, L2): Outer loop executed
for el in L1: len(L1) times
matched = False Each iteration will execute
for e2 in L2: inner loop up to len(L2)
1f el == e2: times

1f not

matched = True O(len(L1)*len(L2))

break Worst case when L1 and L2

matched: same length, none of

return False elements of L1 in L2

return True O(Ien(Ll)Z)

6.0001 LECTURE 9

QUADRATIC COMPLEXITY:
EXAMPLE 3

® Find intersection of two lists, return a list with each element
appearing only once

def intersect (Ll, L2):
tmp = []
for el in L1:
for e2 1in L2:
1f el == e2:
tmp.append (el)

unique = []
for e 1in tmp:
1f not(e 1n unique):

unique.append (e)
return unique

QUADRATIC COMPLEXITY:

EXAMPLE 3

def intersect (L1, L2):
tmp = []
for el in L1l:
for e2 in L2:
1f el == e2:

tmp.append (el)

unique = []
for e in tmp:

1f not(e in unique) :
unique.append (e)

return unique

6.0001 LECTURE 9

First nested loop takes
O(len(L1)*len(L2)) steps.

Second loop takes at most
O(len(L1)*len(L2)) steps.
Typically not this bad.

Overall O(len(L1)*len(L2))

EXPONENTIAL
COMPLEXITY

EXPONENTIAL COMPLEXITY

= Recursive functions where have more than one
recursive call for each size of problem

o Fibonacci

= Many important problems are inherently exponential
o Unfortunate, as cost can be high

> Will lead us to consider approximate solutions more
quickly

6.0001 LECTURE 10

EXPONENTIAL COMPLEXITY
GENERATE SUBSETS oad\\.\sxo*"'“\@

A€
def gen subsets (L) : &P > e\eV(‘e(\z
if len(L) == 0: .«\O\)’x\asze\ewe“
return [[]] \ose"s“\x'\\’c"\%
smaller = gen subsets(L[:-1]) A ,&\\'\5‘0 30
extra = L[-1:] dea‘e ‘\o“c"a
new = [] e 50\\6«\"'“‘
for small in smaller: o a\\;\‘\(\\’é"& @\‘\(\\’6("’;\\0\)‘
new.append (small+extra) 006. e,&\(\ose&\(\oc,e““\
return smaller+new Co(o‘o\(;j\‘a‘\d

6.0001 LECTURE 10

EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

def gen subsets (L) : = Assuming append is
if len(L) == 0: constant time
return [[]]
smaller = gen subsets(L[:-1]) = Time includes time to
extra = L[-1:] solve smaller problem,
new = [] plus time needed to
for small in smaller: make a copy of all

new.append (small+extra) elements in smaller
problem

return smaller+new

EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

def gen subsets (L) : = But important to think
if len(L) == 0: about size of smaller
return [[]]
smaller = gen subsets(L[:-1]) = Know that for a set of size k
extra = L[-1:] there are 2 cases
new = []

= So to solve need 2"1 4+ 2n-2

for small 1in smaller: 0
+ ... +2° steps

new.append (small+extra)

return smaller+new = Math tells us this is O(2")

COMPLEXITY OF
ITERATIVE FIBONACCI

f fib_ 1 :
- -fjgb‘lterém = Best case:
1 n == :
return 0 (\S‘,&(\"- O(l)
elif n == 1: 00\\/\ |
return 1 O = Worst case:
T 2~ 0(1) +0(n) + O(1) > O(n)
fib i = 0 Co“\/\
fib ii = 1 o\
for 1 in range(n-1):
tmp = fib 1 “Néﬁ
fib i = fib ii O\“\
fib ii = tmp + fib ii
return fib 11 X
) co“s’@(\

COMPLEXITY OF
RECURSIVE FIBONACCI

def fib recur (n) :
"M gssumes noan int >= 0 """
1f n == 0:
return O
elif n == 1:
return 1
else:
return fib recur(n-1) + fib recur (n-2)

= Worst case:
0(2")

COMPLEXITY OF RECURSIVE
FIBONACCI

fib (5)
/ \
fib (4) fib (3)
fib (3) fib(2) fib (2) fib (1)
\
fib(2) fib (1)

= Can do a bit better than 2" since tree thins out to the right

= But complexity is still order exponential

¥¢ LIVE EXERCISE

TEST YOURSELF

def all digits (nums):
""" nums 1s a list of numbers """
digits = [0,1,2,3,4,5,6,7,8,9]
for 1 1n nums:
1sin = False
for jJ 1in digits:
1f 1 == 7J:
1sin = True
break
1f not 1sin:
return False

return True

6.0001 LECTURE 9

http://bit.ly/60001-41

BIG OH SUMMARY

= Compare efficiency of algorithms
* notation that describes growth

* lower order of growth is better
* independent of machine or specific implementation

= Using Big Oh
 describe order of growth
e asymptotic notation
* upper bound
* worst case analysis

6.0001 LECTURE 9

5 Min Break, then Quiz Time!

= Sit at a seat, not on the floor

= No aids allowed, only MITx and your IDE

" If you finish early, stay in your seat (no phones,
external websites, etc)

" Checkout password given in the last 2 mins of
exam

6.0001 LECTURE 1

	PROGRAM EFFICIENCY�(download slides and .py files to follow along!)
	TODAY
	Assigned Reading
	EFFICIENCY IS IMPORTANT
	EVALUATING ALGORITHMS
	COMPLEXITY CLASSES ORDERED LOW TO HIGH
	CONSTANT COMPLEXITY
	CONSTANT COMPLEXITY
	CONSTANT COMPLEXITY: EXAMPLE 1
	CONSTANT COMPLEXITY: EXAMPLE 2
	LINEAR COMPLEXITY
	LINEAR COMPLEXITY
	LINEAR COMPLEXITY: EXAMPLE 1
	LINEAR COMPLEXITY: EXAMPLE 2
	LINEAR COMPLEXITY: EXAMPLE 3
	LINEAR SEARCH �ON UNSORTED LIST
	LINEAR SEARCH �ON SORTED LIST
	POLYNOMIAL COMPLEXITY
	POLYNOMIAL COMPLEXITY�(OFTEN QUADRATIC)
	QUADRATIC COMPLEXITY: EXAMPLE 1
	QUADRATIC COMPLEXITY: EXAMPLE 2
	QUADRATIC COMPLEXITY: EXAMPLE 2
	QUADRATIC COMPLEXITY: EXAMPLE 3
	QUADRATIC COMPLEXITY: EXAMPLE 3
	EXPONENTIAL COMPLEXITY
	EXPONENTIAL COMPLEXITY
	EXPONENTIAL COMPLEXITY�GENERATE SUBSETS
	EXPONENTIAL COMPLEXITY�GENERATE SUBSETS
	EXPONENTIAL COMPLEXITY�GENERATE SUBSETS
	COMPLEXITY OF �ITERATIVE FIBONACCI
	COMPLEXITY OF �RECURSIVE FIBONACCI
	COMPLEXITY OF RECURSIVE FIBONACCI
	TEST YOURSELF
	BIG OH SUMMARY
	5 Min Break, then Quiz Time!

