
PROGRAM EFFICIENCY
(download slides and .py files to follow along!)

6.0001 LECTURE 9

6.0001 LECTURE 9 1



TODAY
 Formally evaluate programs

 Efficiency in time

 Orders of growth, big Oh notation

 Examples of different complexity cases

6.0001 LECTURE 9 2



Assigned Reading
 Today
◦ Chapter 9
◦ 10.1 – 10.2

Monday
◦ 10.3
◦ Chapter 11

6.0001 LECTURE 1 3

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised_083117.pdf



EFFICIENCY IS IMPORTANT
 Separate time and space efficiency of a program

 Tradeoff between them: can use up a bit more 
memory to store values for quicker lookup later

 Challenges in understanding efficiency
◦ A program can be implemented in many different ways
◦ You can solve a problem using only a handful of different 

algorithms

Want to separate choice of implementation from 
choice of more abstract algorithm

6.0001 LECTURE 9 4



EVALUATING ALGORITHMS
 Focus on idea of counting operations in an algorithm, but 
not worry about small variations in implementation

 Focus on how algorithm performs when size of problem 
gets arbitrarily large

 Look at the worst case asymptotic run time of a program, 
as the input grows to a large value

6.0001 LECTURE 9 5



COMPLEXITY CLASSES 
ORDERED LOW TO HIGH

O(1) : constant

O(log n) : logarithmic

O(n) : linear

O(n log n): loglinear

O(nc) : polynomial

O(cn) : exponential

6.0001 LECTURE 9 6



CONSTANT 
COMPLEXITY

6.0001 LECTURE 10 7



CONSTANT COMPLEXITY
 Complexity independent of inputs

 Very few interesting algorithms in this class, but can 
often have pieces that fit this class

 Can have loops or recursive calls, but number of 
iterations or calls independent of size of input

6.0001 LECTURE 10 8



CONSTANT COMPLEXITY: 
EXAMPLE 1
 Add x to y
def add(x, y):

return x+y

 O(1)

6.0001 LECTURE 9 9



CONSTANT COMPLEXITY: 
EXAMPLE 2
Multiply x by y
def mul(x, y):

tot = 0

for i in range(y):

tot += x

return tot

 complexity in terms of x: O(1)

 complexity in terms of y: O(y)
6.0001 LECTURE 9 10



LINEAR 
COMPLEXITY

6.0001 LECTURE 10 11



LINEAR COMPLEXITY
 Simple iterative loop algorithms

 Loops must be a function of input 

 Linear search a list to see if an element is present

 Recursive functions with one recursive call and 
constant overhead for call

6.0001 LECTURE 10 12



LINEAR COMPLEXITY: 
EXAMPLE 1
 Add characters of a string, assumed to be composed 
of decimal digits
def add_digits(s):

val = 0

for c in s:

val += int(c)

return val

 O(len(s))

 O(n) where n is len(s)

6.0001 LECTURE 9 13



LINEAR COMPLEXITY: 
EXAMPLE 2
 Loop to find the factorial of a number
def fact_iter(n):

prod = 1

for i in range(1, n+1):

prod *= i

return prod

 Number of times around loop is n
 Number of operations inside loop is a constant
 Overall just O(n)

6.0001 LECTURE 9 14



LINEAR COMPLEXITY: 
EXAMPLE 3
def fact_recur(n):

""" assume n >= 0 """
if n <= 1: 

return 1
else: 

return n*fact_recur(n – 1)

 Computes factorial recursively 

 If you time it, notice that it runs a bit slower than 
iterative version due to function calls

 O(n) because the number of function calls is linear in n

 Iterative and recursive factorial implementations are 
the same order of growth

6.0001 LECTURE 10 15



LINEAR SEARCH 
ON UNSORTED LIST
def linear_search(L, e):

found = False
for i in range(len(L)):

if e == L[i]:
found = True

return found

Must look through all elements to decide it’s not there

 O(len(L)) for the loop * O(1) to test if e == L[i]

 Overall complexity is O(n) – where n is len(L) 

 O(len(L))

6.0001 LECTURE 9 16



LINEAR SEARCH 
ON SORTED LIST
def search(L, e):

for i in L:
if i == e:

return True
if i > e:

return False
return False

Must only look until reach a number greater than e
 O(len(L)) for the loop * O(1) to test if e == L[i]
 Overall complexity is O(n) – where n is len(L) 
 O(len(L))

6.0001 LECTURE 9 17



POLYNOMIAL 
COMPLEXITY

6.0001 LECTURE 10 18



POLYNOMIAL COMPLEXITY
(OFTEN QUADRATIC)
Most common polynomial algorithms are quadratic, 
i.e., complexity grows with square of size of input

 Commonly occurs when we have nested loops or 
recursive function calls

6.0001 LECTURE 10 19



QUADRATIC COMPLEXITY: 
EXAMPLE 1
def g(n):

""" assume n >= 0 """
x = 0
for i in range(n):

for j in range(n):
x += 1

return x

 Computes n2 very inefficiently
When dealing with nested loops, look at the ranges
 Nested loops, each iterating n times
 O(n2)

6.0001 LECTURE 9 20



QUADRATIC COMPLEXITY: 
EXAMPLE 2
 Find if L1 is a subset of L2, if all elements in L1 are in L2
def is_subset(L1, L2):

for e1 in L1:
matched = False
for e2 in L2:

if e1 == e2:
matched = True
break

if not matched:
return False

return True

6.0001 LECTURE 9 21



QUADRATIC COMPLEXITY: 
EXAMPLE 2

6.0001 LECTURE 9 22

def is_subset(L1, L2):

for e1 in L1:

matched = False

for e2 in L2:

if e1 == e2:

matched = True

break

if not matched:

return False

return True

Outer loop executed 
len(L1) times

Each iteration will execute 
inner loop up to len(L2) 
times

O(len(L1)*len(L2))

Worst case when L1 and L2 
same length, none of 
elements of L1 in L2

O(len(L1)2)



QUADRATIC COMPLEXITY: 
EXAMPLE 3
 Find intersection of two lists, return a list with each element 
appearing only once
def intersect(L1, L2):

tmp = []
for e1 in L1:

for e2 in L2:
if e1 == e2:

tmp.append(e1)
unique = []
for e in tmp:

if not(e in unique):
unique.append(e)

return unique

6.0001 LECTURE 9 23



QUADRATIC COMPLEXITY: 
EXAMPLE 3

6.0001 LECTURE 9 24

def intersect(L1, L2):
tmp = []
for e1 in L1:

for e2 in L2:
if e1 == e2:

tmp.append(e1)
unique = []
for e in tmp:

if not(e in unique):
unique.append(e)

return unique

First nested loop takes 
O(len(L1)*len(L2)) steps.

Second loop takes at most 
O(len(L1)*len(L2)) steps. 
Typically not this bad.

Overall O(len(L1)*len(L2))



EXPONENTIAL 
COMPLEXITY

6.0001 LECTURE 10 25



EXPONENTIAL COMPLEXITY
 Recursive functions where have more than one 
recursive call for each size of problem
◦ Fibonacci

Many important problems are inherently exponential
◦ Unfortunate, as cost can be high
◦ Will lead us to consider approximate solutions more 

quickly

6.0001 LECTURE 10 26



EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

def gen_subsets(L):
if len(L) == 0:

return [[]]
smaller = gen_subsets(L[:-1]) 
extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra) 
return smaller+new

6.0001 LECTURE 10 27



EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

6.0001 LECTURE 10 28

def gen_subsets(L):
if len(L) == 0:

return [[]] 
smaller = gen_subsets(L[:-1])
extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

 Assuming append is 
constant time

 Time includes time to 
solve smaller problem, 
plus time needed to 
make a copy of all 
elements in smaller 
problem



EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

6.0001 LECTURE 10 29

 But important to think 
about size of smaller

 Know that for a set of size k 
there are 2k cases

 So to solve need 2n-1 + 2n-2

+ … +20 steps

Math tells us this is O(2n)

def gen_subsets(L):
if len(L) == 0:

return [[]] 
smaller = gen_subsets(L[:-1])
extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra)
return smaller+new



COMPLEXITY OF 
ITERATIVE FIBONACCI
def fib_iter(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

fib_i = 0

fib_ii = 1

for i in range(n-1):

tmp = fib_i

fib_i = fib_ii

fib_ii = tmp + fib_ii

return fib_ii

 Best case:
O(1)
Worst case:

O(1) + O(n) + O(1)  O(n)

6.0001 LECTURE 10 30



COMPLEXITY OF 
RECURSIVE FIBONACCI
def fib_recur(n):

""" assumes n an int >= 0 """
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib_recur(n-1) + fib_recur(n-2)

Worst case:
O(2n)

6.0001 LECTURE 10 31



COMPLEXITY OF RECURSIVE 
FIBONACCI

 Can do a bit better than 2n since tree thins out to the right

 But complexity is still order exponential 

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1)

6.0001 LECTURE 10 32



TEST YOURSELF
def all_digits(nums):

""" nums is a list of numbers """

digits = [0,1,2,3,4,5,6,7,8,9]

for i in nums:

isin = False

for j in digits:

if i == j:

isin = True

break

if not isin:

return False

return True

6.0001 LECTURE 9 33

LIVE EXERCISE

http://bit.ly/60001-41


BIG OH SUMMARY
 Compare efficiency of algorithms

• notation that describes growth
• lower order of growth is better
• independent of machine or specific implementation

 Using Big Oh
• describe order of growth
• asymptotic notation
• upper bound
• worst case analysis

6.0001 LECTURE 9 34



5 Min Break, then Quiz Time!
 Sit at a seat, not on the floor

 No aids allowed, only MITx and your IDE

 If you finish early, stay in your seat (no phones, 
external websites, etc)
 Checkout password given in the last 2 mins of 
exam

6.0001 LECTURE 1 35


	PROGRAM EFFICIENCY�(download slides and .py files to follow along!)
	TODAY
	Assigned Reading
	EFFICIENCY IS IMPORTANT
	EVALUATING ALGORITHMS
	COMPLEXITY CLASSES ORDERED LOW TO HIGH
	CONSTANT COMPLEXITY
	CONSTANT COMPLEXITY
	CONSTANT COMPLEXITY: EXAMPLE 1
	CONSTANT COMPLEXITY: EXAMPLE 2
	LINEAR COMPLEXITY
	LINEAR COMPLEXITY
	LINEAR COMPLEXITY: EXAMPLE 1
	LINEAR COMPLEXITY: EXAMPLE 2
	LINEAR COMPLEXITY: EXAMPLE 3
	LINEAR SEARCH �ON UNSORTED LIST
	LINEAR SEARCH �ON SORTED LIST
	POLYNOMIAL COMPLEXITY
	POLYNOMIAL COMPLEXITY�(OFTEN QUADRATIC)
	QUADRATIC COMPLEXITY: EXAMPLE 1
	QUADRATIC COMPLEXITY: EXAMPLE 2
	QUADRATIC COMPLEXITY: EXAMPLE 2
	QUADRATIC COMPLEXITY: EXAMPLE 3
	QUADRATIC COMPLEXITY: EXAMPLE 3
	EXPONENTIAL COMPLEXITY
	EXPONENTIAL COMPLEXITY
	EXPONENTIAL COMPLEXITY�GENERATE SUBSETS
	EXPONENTIAL COMPLEXITY�GENERATE SUBSETS
	EXPONENTIAL COMPLEXITY�GENERATE SUBSETS
	COMPLEXITY OF �ITERATIVE FIBONACCI
	COMPLEXITY OF �RECURSIVE FIBONACCI
	COMPLEXITY OF RECURSIVE FIBONACCI
	TEST YOURSELF
	BIG OH SUMMARY
	5 Min Break, then Quiz Time!

