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o Chapter 17

=Next lecture:
o Chapter 18
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Recall Assumptions for Empirical Rule

Note: not that mean estimate is zero,

*The mean estimation error is zero but mean of errors of estimate is zero

=The distribution of the errors in the estimates is a
normal (or Gaussian) distribution — sometimes also
called a bell curve

0.40 Nornlwal Dilstribultion, Mean|= 0 alnd S[Ili =1

0.35

0.30

0.25

0.20

0.15

Carl Friedrich Gauss: 1777-1855
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Empirical Rule (recap)

=|f we assume that
o Mean estimation error is zero

o Distribution of the errors in the estimates is normal
(Gaussian)

*Then by computing mean (¢) and standard deviation
(0), can set confidence intervals:

o> ¥68% of data within one standard deviation of mean
o ~¥95% of data within 1.96 standard deviations of mean
o ~99.7% of data within 3 standard deviations of mean

=Common to use 95% confidence interval — state that
value is in range:

u + 1.960 with 95% confidence
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Generating Normally Distributed Data

What is a Gaussian (or normal)
distribution?

First, what does it look like? Sampling from

random.gauss will
reflect relative

dist, numSamples = [], 1000000 probabilities of
distribution below
for i in range(numSamples): (with SD of 100)

dis-t . append ( r-\andom . gauss (@, 1@@) 0.40,_Normal Distribution, Mean = 0 and SD =1

0.35)
0.30}

pylab.hist(dist, bins = 100) ozs|

0.20}

pylab.xlabel('Value') i
pylab.ylabel( ' Frequency') o10]

0.05|
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Output

45000 , , , , ,
40000 |-
35000 |-

ESDG{‘J{} :

0 25000 |-

o 20000 |

Y 15000}

L
10000 |-

5000 |-

[] | i
—600 —400 —-200 O 200 400 600
Value

* This is a discrete approximation of a Gaussian distribution

* l|deally, for any set of sample values along x axis, this should
describe probability of seeing that value

* But need to define independent of set of sample values
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Defining Distributions

"Probability distribution captures notion of relative
frequency with which a random variable takes on
certain values

o Discrete random variables drawn from finite set of values

o Continuous random variables drawn from real numbers
between two numbers (i.e., infinite set of values)

"For discrete variable, simply list the probability of each
value, must add up to 1

=Continuous case trickier, can’t enumerate probability
for each of an infinite set of values
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PDF’s

=Distributions defined by probability density functions
(PDFs)

*PDF at a point describes relative likelihood of that
sample; more typically used to describe probability that
a random variable lies between two points

=*Defines a curve where the values on the x-axis lie
between minimum and maximum value of the variable

o Area under curve between two points is probability of
example falling within that range

*For small range, PDF can be thought of as defining
probability at a point
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PDF’s define probabilities

= Area under curve over small x span defines probability
of value lying in that range

Normal Distribution, Mean = 0 and SD =1

0.40
0.35
Areain red is
0.30 probability that
095 value lies
between 1-¢
0.20 and 1+¢

) ==
Limit as span tends to zero defines probability
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PDF for Normal Distribution

def gaussian(x, mu, sigma):
factorl = (1.0/(sigma*((2*pylab.pi)**0.5)))
factor2 = pylab.e**-(((x-mu)**2)/(2*sigma**2))
return factorl*factor2

xVals, yvVals = [], [] 2
mu, sigma = 0, 1 1 G

X = -6 P(x) = xe 207
step = 0.05 oV2T

while x <= 6:

xVals.append(x)
yVals.append(gaussian(x, mu, sigma))
X += step
pylab.plot(xVals, yVals)
pylab.title( 'Normal Distribution, mu = " + str(mu)\

+ ', sigma = ' + str(sigma))
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Output

Are values on y-axis

0 46\|Drma| Distribution, mu = 0, sigma =1

| ' probabilities?
0.35+ B N
0.30} | They are dgn5|t|es;
0.25 | | i.e., dlerlyatlve of
0.20+ | CL.Jm%J atl.ve
distribution
0.15} ] _
function.
0.10 | N
0.05 - a Hence we use
n.DD_E = integration to

interpret a PDF
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Everybody Likes Normal Distributions

=Qccur a lot!

*Nice mathematical ti
ICeé mMatnhematiCal properties — F—
400 20000
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. \ ;
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- [ 06l NH Land, Jun—-Jul-Aug | #,/ﬁ\‘ Women
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Everybody Likes Normal Distributions

*They occur a lot!

=*Nice mathematical properties
o Symmetric around mean

o Mean is also mode and median

00 01 02 03 04

o Area under curve is 1

-3z -2 -lo T} 1o 20 3o

o |ts density is infinitely
differentiable

° |t is unimodal — its first
derivative is positive to the left
of the mean, negative to the
right of the mean and zero only
at the mean

fix)
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But There Are Other Distributions!

=Uniform distributions
=*Binomial distributions
sExponential distributions

=Other, more esoteric, distributions
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Uniform Distributions

=All intervals of the same length have the same probability

"Probability that a value falls between x and y (where total range
is a to b) is:

y—x
P(x,y)=p—a if x=aand y < b
0 otherwise

"random.uniform(min, max) Wwill draw an element within
range with uniform probability

=®Discrete version

P(x) = m if xe$

0. otherwise

srandom.choice (S) Wwill select an element from set with
uniform probability
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Uniform Distributions: Examples

=Coin flipping
=Dice rolling
=sRoulette

="\Waiting times, e.g., arrival
of bus

="Quantization errorin
analog-to-digital conversion 2

Analog to Digital
Audio Converter
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Binomial Distributions

"What is the probability that a test succeeds exactly k
times out of n independent trials (e.g., flip a coin n

times, probability of exactly k heads)?

5If p is probability of success on one trial, then desired

probability is:

P() = () p (1 -

where

(D T k! (nn!— k)!

aka “n choose k”

*Multinomial distribution generalizes to case of more
than two, but a discrete, number of outcomes on each

trial
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Frequency

Binomial Distributions

"Mean: np

*Variance: np(1 — p)

5lf n is large enough, then binomial distribution is
approximated by a normal distribution, with mean np

and variance np(1 — p)

0.08
0.07
0.06
o
2 0.05
Y 0.04
D 0.03
| .
L 0.02
0.01
0.00

Binomial Distribution, p = 1/2
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Binomial Distributions: Examples

="Any problem where have two outcomes on
each trial, and want to know probability of
exactly k trials succeeding out of n

o |f probability of a false positive on test of
equipment is known, how many independent
tests are needed to ensure equipment is
reliable with given probability

> Probability of exactly k “heads” in n flips

o Suppose individuals with a specific gene have
a known probability of eventually contracting ©
a certain disease. Run a lifetime study on a
set of individuals, and determine probability
of number of individuals who will contract
the disease
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Exponential Distributions

sSuppose p is probability of an event occurring (e.g., a
molecule of a drug being cleared from the body)

"Probability event has not occurred after t time steps
(e.g., molecule still in body):

(1-p)t

1000 | Clear‘?nce Df. Drug |

800

600 |-

400 -

200 |-

Molecules Remaining

0

0 200 400 600 800 1000
Time
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Exponential Distributions

=Probability density function

(e ifx =0
f(x)_{o. if x <0
1
Mean: 2
=\/ariance: %2
=Cumulative distribution function
1—-eMifx>0
F —
2 { 0 if x <0

=Can generate exponential distributions using o
random.expovariate (lambd), where lambd is 1 divided
by mean of distribution

=Discrete version called the geometric distribution
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*Modeling inter-arrival times (time
between events), e.g.:

o cars entering a highway,
o or requests for a Web page,
° or job requests on a server

*Time for a radioactive particle to
decay (clicks on a Geiger counter)

*Time until default on payment to
debt holders

sService time of agents in a system
(how long a bank teller takes to serve
a customer)
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Back to our Empirical Rule

=|f we assume that

o Mean estimation error is zero

o Distribution of the errors in the estimates is normal
(Gaussian)

*Then by computing mean (¢) and standard deviation
(0), can set confidence intervals:

o> ¥68% of data within one standard deviation of mean
o ~¥95% of data within 1.96 standard deviations of mean
o ~99.7% of data within 3 standard deviations of mean

=Common to use 95% confidence interval — state that
value is in range:

u + 1.960 with 95% confidence
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Where are we?

=So if we have a set of samples of a parameter where:

o The distribution of errors from the estimate has zero
mean and is normally (or Gaussian) distributed,

*Then:

o The Empirical Rule applies and we can state a range of
values within which we are confident the actual value
lies, with a 95% certainty (or some other certainty).

=Can we check that Empirical Rule works?
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A Digression

=SciPy library contains many useful mathematical
functions used by scientists and engineers

sscipy.integrate.quad has up to four arguments
° a function or method to be integrated

° a number representing the lower limit of the integration,

° a number representing the upper limit of the integration,
and

° an optional tuple supplying values for all arguments,
except the first, of the function to be integrated

sscipy.integrate.quad returns a tuple
o Approximation to result
o Estimate of absolute error
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Checking the Empirical Rule

import scipy.integrate

def checkEmpirical(numTrials):
for t in range(numTrials):
mu = random.randint(-100, 100)
sigma = random.randint(1l, 100)
print('For mu =", mu, ‘and sigma =', sigma)
for numStd in (1, 1.96, 3):
area = scipy.integrate.quad(gaussian,
mu-numStd*sigma,
mu+numStd*sigma,
(mu, sigma))[@]
print(' Fraction within', numStd,
‘std =', round(area, 4))

checkEmpirical(5)
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Checking Empirical Rule

For mu = 58 and sigma = 54
Fraction within 1 std = (8.6827
Fraction within 1.96 std =
Fraction within 3 std = [@.

For mu = -B69 and sigma = 36
Fraction within 1 std —IE 6827
Fraction within 1.96 std =[8.95

Fraction within 3 std = |[@.959/73)
For mu = =22 and sigma = 18
Fraction within 1 std = @.6827
Fraction within 1.96 std =|8.85
Fraction within 3 std = E Qo733
For mu = =18 and sigma = 53
Fraction within 1 std = B. 6827
Fraction within 1.96 std =|B8.85
Fraction within 3 std = |@8.9973

For mu = 48 and sigma = 8
Fraction within 1 std =
Fraction within 1.96 std =|8.85

Fraction within 3 std = |8.9973
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Checking Empirical Rule

sEmpirical rule really applies to normal distributions

=But if binomial distribution approaches normal, is
empirical rule a decent approximation?

For n = 50
Fraction within
Fraction within
Fraction within

For n = 200
Fraction within
Fraction within
Fraction within

For n = 1000
Fraction within
Fraction within
Fraction within

=

=

=

.0 std = 0.7974
.96 std = 0.9672
.0 std = 0.9991

.0 std = 0.7112
.96 std = 0.96
.0 std = 0.9977

.0 std = 0.7033
.96 std = 0.9537
.0 std = 0.9974
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But:
Not All Distributions Are Normal

"Empirical rule works for normal distributions

"But are the outcomes of spins of a roulette wheel
normally distributed?

*No, they are uniformly distributed
o Each outcome is equally probable

=So, why did the empirical rule work when we analyzed
betting on roulette?
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Why Did the Empirical Rule Work?

"Because we are reasoning
not about a single spin,
but about the mean of a
set of spins

*And the Central Limit
Theorem applies to that
mean of the set
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Recall Inferential Statistics

= Make inferences about a population by examining one or more
random samples drawn from that population

o infer property of population based on statistics of sub-population
o avoid cost of having to look at entire population, if very large
> handle cases where not feasible to sample whole population

=*With Monte Carlo simulation, generate lots of random samples
and use them to draw inferences and to compute confidence
intervals about the inferences using empirical rule

o allows us to estimate likelihood of inference
o useful when variation in value due to noise or random effects

"But suppose we can’t create samples by simulation?
> need different approach when can’t simulate randomness
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Probability Sampling

sAlternative to simulation is to directly sample
from population

="Assume each member of population has
nonzero probability of being included in sample

o Select subpopulation by sampling at random

sSimple random sampling: each member of
whole population has equal chance of selection

=*Not always appropriate
o Popular myth: all MIT UGS are CS majors

o Take a simple random sample of 100 students

o What might you conclude about MIT student majors from
such a sample?

o What might you conclude about views of MIT students
based on such a sample?
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1600

1400

1200

1000

800

600

400

200

0

Probability Sampling

MIT majors by school or college

In random sample of 100, expect:

e 1 Architecture & Planning
* 33 Engineering
* 42 Computer Science

— ] ]

3 HASS
* 3 Management
* 18 Science
In simulated sampling over
arch - — — — > 10,000 trials, saw that on average

But in simulated sampling over 10,000 trials
o 26% of trials have no SAP, 7% no SHASS, 6% no SLOAN

> 0.14% with only SOE and SOS and CompSci

> s0 2 of 1000 times, would conclude only Engineering & Science &
Computation, but might conclude no SAP a quarter of time
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Probability Sampling

MIT majors by school or college
1600

00 In random sample of 100, expect
e 1 Architecture & Planning

o * 33 Engineering

800 42 Computer Science

600 3 HASS

* 3 Management
* 18 Science
In simulated sampling over
arch — — — > 10,000 trials, saw that on average

400

200

Suppose | sample 1% (or 33) of the UG population over 10,000 trials
o 64% of trials have no SAP, 42% no SHASS, 40% no SLOAN

> 10.3% with only SOE and SOS and Computation

> So 1 of 10 times, would conclude only Engineering & Science &
Computation; might conclude no SAP 2/3rds of time
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Stratified Sampling

=Stratified sampling
o Partition population into subgroups

o Take simple random sample from each subgroup (size reflects subgroup’s
relative size)

=Useful when there are small subgroups that should be represented (e.g.,
political polls)

=Useful when subgroups should be represented proportional to their share of
population

o E.g. if want to get opinions from MIT UG population, for sample of size 100
randomly pick 1 A&P student, 3 HASS students, 3 Sloan students, etc.

=Can be used to reduce the needed size of sample
o Variability within subgroups often less than variability in entire population

=Requires care to do properly
> How many samples to draw from each subgroup?

o What are appropriate subgroups?
°c Why do we think subgroups’ variability is smaller?

=sWe'll stick to simple random samples

6.0002 LECTURE 8




Using Sampling to Estimate Temperatures

Max Air Temperature [F] for US County from 1979-2011

| -1

Heat Index (1979«
2011)




Data

"From U.S. National Centers for Environmental
Information (NCEI)

=Daily high and low temperatures 1961-2015

o 21 different US cities

o ALBUQUERQUE, BALTIMORE, BOSTON, CHARLOTTE, CHICAGO,
DALLAS, DETROIT, LAS VEGAS, LOS ANGELES, MIAMI, NEW ORLEANS,
NEW YORK, PHILADELPHIA, PHOENIX, PORTLAND, SAN DIEGO, SAN
FRANCISCO, SAN JUAN, SEATTLE, ST LOUIS, TAMPA

© 421,848 data points (examples)

=L et’s use some code to look at the data
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New in Code

"Code getHighs extracts high temperatures from file,
code getMeansAndSDs computes mean and standard
deviation for entire population and sample from
population

=numpy . std is function in the numpy module that
returns the standard deviation

=random.sample(population, sampleSize) returns a list
containing sampleSize randomly chosen distinct
elements of population

o Sampling without replacement

"Going to plot using histogram — count number of times
a particular value occurs
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Histogram of Entire Population

Daily High 1961-2015, Population
(mean = 16.3, std = 9.44)

60000
Or in °F:

,, 20000 61.3[+/-17.0
= 40000
0 Why is
E 30000 o so large?
£ 20000
=
=

Is this really a
normal
distribution?

93{} —-20 =10 0 10 20 30 40 50

Degrees C
Would like to infer average temperature with some level of confidence. Empirical

rule would help if it applies, but if this is not normal, why would sample be normal?
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Some Observations

=*Why large standard deviation:
° Including many locations together
o Weather in Phoenix different from Boston
° Including weather from entire year

° In Bolston, weather in January not like weather
in July

="Could look at data by month or location
or year. But for now, let’s just focus on
mean temperature.

=Can we get a good approximation
without looking at all the data?

="And this doesn’t really look like a normal
distribution. Can we infer something
with confidence if this is not a normal
distribution?

o Remember that we used empirical rule to

estimate confidence, and that assumes a
normal distribution of errors
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Daily High 1961-2015, Population
(mean = 16.3, std = 9.44)

10 20 30 40 50
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Histogram of Random Sample of Size 100

Daily High 1961-2015, Sample
(mean = 17.07, std = 10.39)

p—
M

p—a
-

Number Days
oh

92{} —10 0 10 20 30 40

Degrees C

Looks even less like a normal distribution

6.0002 LECTURE 8




o 500 x 375
Means and Standard Deviations

"Population mean =(16.3

sSample mean =|17.1

sStandard deviation of population =9.44
sStandard deviation of sample =10.4
=A happy accident, or something we should expect?

ulet’s try it 1000 times and plot the results
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New in Code

"Code in handout extracts sample of size sampleSize,
computes mean, then repeats this for numSamples
trials and computes the mean of those means

"pylab.axvline (x = popMean, color = 'r')
draws a red vertical line at popMean on the x-axis

"There’s also a pylab.axhline function
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Try It 1000 Times

"Draw a sample of 100 measurements from entire set
of measurements

"Compute mean of that sample

"Repeat this sampling process 1000 times (each trial
with a different sample of 100 data points)

o Record the mean of each sample trial

"Compute the mean of the means
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Mean of 1000 Means

Means of Samples

In comparison

Mean high temperature over
entire population

Frequency
8

y

I+

ci3 14 15 16 17 18 19 20
Mean

Mean of sample Means =

Standard deviation of sample means =

t 10000

Mean of mean high temperatures, 0

100 samples, 1000 trials -30 -20 =10 0 10 20 30 40 50
Degrees C

P
=
o
=]
(]

®

Number Days
s 8
o ]
o o
o o
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Mean of 1000 Means

Means of Samples
160 . l l mples

140

120

Frequency
= ()] co 5
o o o o

N
o

O
W

14 15 16 17 18 19 20
Mean

| )
I

Mean of sample Means = 16.3
Standard deviation of sample means = 0.94
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What’s the 95%
confidence interval?

16.28 +/- 1.96*0.94
Or14.5-18.1

Includes population
mean, but still
pretty wide interval

Suppose we want a
tighter bound?




Getting a Tighter Bound

=Will drawing more samples help?
o Let’s try increasing from 1000 to 2000 trials

o Standard deviation of estimated mean
temperature goes from 0.943 to 0.946

"How about larger samples?

o Let’s try increasing sample size from 100 to 200,
but sticking with 1000 trials

o Standard deviation of estimated mean
temperature goes from 0.943 to 0.662
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Error Bars, a Digression

"Graphical representation of the
variability of data

=\Way to visualize uncertainty

> Plot mean value and size of variance When confidence

intervals don’t overlap,
we can conclude that
means are statistically

! significantly different at
some level of confidence
— (e.g., 95%).

Overlapping confidence
intervals does not
imply lack of significance.
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55% CI Pulse rate - resting (beats/muin)
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rarely or never once a fortmght once a weelk mere than weeldy

https://upload.wikimedia.org/wikipedia/commons/1/1d/Pulse_Rate_Error_Bar_By_ Exercise_Level.png
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Let’s Look at Error Bars for Temperatures

def showErrorBars(population, sizes, numTrials):
xVals = []
sizeMeans, sizeSDs = [], []
for sampleSize in sizes:
xVals.append(sampleSize)
trialMeans = []
for t in range(numTrials):
sample = random.sample(population, sampleSize)
popMean, sampleMean, popSD, sampleSD =\
getMeansAndSDs (population, sample)
trialMeans.append(sampleMean)
sizeMeans.append(sum(trialMeans)/len(trialMeans))
sizeSDs.append(numpy.std(trialMeans))
|py1ab.errorbar(xVals, sizeMeans,
yerr =|1.96fpylab.array(sizeSDs),
fmt = "0
label = '(95%) Confidence Interval')

Empirical rule:
Using 1.96 * STD accounts for
95% of normal distribution
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Sample Size and Standard Deviation

population = getHighs()
showErrorBars(population,
(50, 100, 200, 300, 400, 500, 600), 100)

19

Mean Temperature (100 trials)
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|
500

|
600

Note how sample
means are close to
actual mean of
entire population

Note how size of
error bars stabilizes
after about 300
samples




Larger Samples Seem to Be Better

="Going from a sample size of 50 to 600 reduced the
confidence interval from about 1.2C to about 0.34C.

"But we are now looking at 600*100 = 60,000 examples

"What has sampling bought us?
o “Absolutely Nothing!”

o Entire population contained ~422,000 samples
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What Can We Conclude from 1 Sample?

*"Mean of means suggests can draw
inference about population from set of
samples

*But would like to avoid taking lots of
samples

*What if we just took one sample?
What can we conclude?

*More than you might think, thanks to
the Central Limit Theorem!
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The Central Limit Theorem (CLT)

=Given a sufficiently large sample:

1) The means of the samples in a
set of samples (the sample means)
will be approximately normally
distributed,

2) This normal distribution will
have a mean close to the mean of
the population, and

3) The variance of the sample
means will be close to the variance
of the population divided by the
sample size.
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Checking CLT for a Continuous Die

def plotMeans(numDice, numRolls, numBins, legend, color, style):

means = [] Note: Usi " |
for i in range(numRolls//numDice): Ote. Using contintous values
vals = 0 between 1 and 6

for j in range(numDice):
vals += S5xrandom.random() + 1 _
means.append(vals/T loat (numDice) ) over set of dice
pylab.hist(means, numBins, color = color, label = legend,
weights = [1/len(means)]*len(means),
hatch = style)
return getMeanAndStd(means)

Note: compute average value

mean, std = plotMeans(1, 1e0@eed, 19, '1 die', 'b', '#%')

print('Mean of rolling 1 die =', str{mean) + ',', 'Std =', std)
mean, std = plotMeans(50, 1000080, 19, 'Mean of 50 dice', 'r', "//'")
print('Mean of rolling 50 dice =', str(mean) + ',', 'Std =', std)
pylab.title('Rolling Continuous Dice')

pylab.xlabel('Value')

pylab.ylabel( 'Probability")

pylab. legend()
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Output

Mean of rolling 1 die = 3.49759575528, Std = 1.4439045633
Mean of rolling 50 dice = 3.49985051798, Std = 0.204887274645

Rolling Continuous Dice

Value

mm Mean of 1 die
Hm Mean of 5 dice
mEm Mean of 25 dice
EEm Mean of 125 dice

‘-?3 llllll

1 2 3 4 5 6

i’:;?"'g':’,"; .||||“|I|.

2 4 6 8 10 12

+t':."+g.°:" 4 8 12 16 20 24

3 ,';-I-\’-,’; 5 10 15 20 25 30

v s +7 allllh...

3 6 9 12 15 18

Distribution of mean values of 1 die -- uniform

Distribution' of mean values of 25 dice -- normal
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Try It for Roulette

numTrials = 1000000
numSpins = 200
game = FairRoulette()

means = []
for i in range(numTrials):
means.append(findPocketReturn(game, 1, numSpins,
False)[9])

pylab.hist(means, bins = 19,
weights = [1/len(means)]*len(means))
pylab.xlabel( 'Mean Return")
pylab.ylabel( 'Probability")
pylab.title( 'Expected Return Betting a Pocket 200 Times')
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Betting a Pocket in Fair Roulette

Expected Return Betting a Pocket 200 Times

Sure looks like
1 anormal
distribution

Probability

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Mean Return
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Moral

"It doesn’t matter what the shape of the distribution of
values happens to be, we can use the Central Limit
Theorem to estimate the mean of a population using
sufficiently large samples

=The Central Limit Theorem also allows us to use the
empirical rule when computing confidence intervals
associated with an estimated mean
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5 Minute Break
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Where are we?

"Goal: given a population, want to infer properties of
mean of population

o Take a single sample of population

o Can measure mean of sample, but is it close to mean of
population, and with what confidence?

o Central Limit Theorem says mean of samples close to
population mean, and single sample mean close to mean
of samples if large enough sample size

o Empirical rule says if population is normally distributed,
then standard deviation lets us set confidence level
° e.g., values within 1.96 * o of mean account for 95% of values

o Central Limit Theorem suggests empirical rule can work
even if population not normally distributed, provided we
can estimate standard deviation of population
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Using the Central Limit Theorem

=Given a sufficiently large sample:

°1) The means of the samples in a set of samples (the
sample means) will be approximately normally
distributed,

°2) This normal distribution will have a mean close to the
mean the population, and

°3) The variance of the sample means will be close to the
variance of the population divided by the sample size.

=Time to use the 3" feature

*Compute standard error of the mean (SEM or SE)
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Standard Error of the Mean

O

Jn

def sem(popSD, sampleSize):
return popSD/sampleSize**0.5

SE =

=*This should measure standard deviation of sub-
population.

=Does it work?
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Testing the SEM

sampleSizes = (25, 50, 100, 200, 300, 400, 500, 600)
numTrials = 50
population = getHighs()
popSD = numpy.std(population)
sems = []
sampleSDs = []
for size in sampleSizes:
sems.append(sem(popSD, size))
means = []
for t in range(numTrials):
sample = random.sample(population, size)
means.append(sum(sample)/len(sample))
sampleSDs.append(numpy.std(means))
pylab.plot(sampleSizes, sampleSDs,
label = 'Std of ' + str(numTrials) + ' means')
pylab.plot(sampleSizes, sems, 'r--', label = 'SEM")
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Standard Error of the Mean

O 5 s SD for 50 Means and SEM _
SE — .\/— = Std of 50 means
=== SEM
n 2.0
=
But, we don’t »n 12T
©
know standard <
deviation of D 1.OF
population
0.5
How might we
approximate it? 0.0

| | | | |
0 100 200 300 400 500 600
Sample Size
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Sample SD vs. Population SD

% Difference in SD

Sample SD vs Population SD, Temperatures
= High temps

|
0 100

|
200

| | |
300 400 500 600

Sample Size
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Looks like with
large enough
sample size, we
might be able to
just use the
sample SD to
compute SEM




The Point

*Once sample reaches a
reasonable size, sample
standard deviation is a pretty
good approximation to
population standard deviation

14 Sample SD vs Population SD, Temperatures

"True only for this example? — Fion termps |

> Does this depend on
distribution of population?

> Does this depend on size of
population?

% Difference in SD

| | | | |
0 100 200 300 400 500 600
Sample Size
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Looking at Distributions

def plotDistributions():

uniform, normal, exp =[], [], []

for i in range(100000):
uniform.append(random.random())
normal.append(random.gauss(09, 1))
exp.append(random.expovariate(0.5))

makeHist(uniform, 'Uniform', 'Value', 'Frequency')

pylab.figure()

makeHist(normal, 'Gaussian', 'Value', 'Frequency')

pylab.figure()

makeHist(exp, 'Exponential', 'Value', 'Frequency')
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Three Different Distributions

6000 ‘ Uniform. | 18000 | __Gaussian
random.random() 16000|
"0 14000 |
4000 _ 12000 random.gauss(O, 1)
9 2 10000
L 3000 L
o = 8000
T 2000 = 6000
4000
1000
2000
8. ) 0.4 0.6 ) : %6 6
Value Value
45000 Exponential
40000 |
55000l random.expovariate(0.5)

30000

25000

20000

requency

H- 15000
10000

5000

. ‘ ‘
% 10 15 20 25
Value
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Does Distribution Matter?

% Difference in SD

25

20

15

10

Sample SD vs Population SD

== |Jniform population
= Normal population
== Exponential population

|
100

|
200

|
300

|
400

Sample Size
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|
500 600

All show same
convergence, but
not equally good
at using sample SD
for population SD

Skew, a measure
of the asymmetry
of a probability
distribution,
matters

The more skewed
a distribution, the
more samples you
need for SD to
become similar

72




Does Population Size Matter?

% Difference in SD

30

25

20

15

10

Sample SD vs Population SD, Uniform

=== Population size = 10000
=== Population size = 100000
ms  Population size = 1000000 ]

0

l l l l l
100 200 300 400 500 600
Sample Size
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To Estimate Mean from a Single Sample!

1) Choose sample size based on estimate of skew in
population

2) Chose a simple random sample of that size from the
population

3) Compute the mean and standard deviation of that sample

4) Use the standard deviation of that sample as estimate of
the SE

5) Use the estimated SE (not the stddev!) to generate
confidence intervals around the sample mean for whole
population

Works great when we choose independent random samples.

Not always so easy to do, as political polls demonstrate.
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Are 200 Samples Enough?

random.seed(9)

temps = getHighs()

sampleSize = 200

numTrials = 10000

popMean = sum(temps)/len(temps)

numBad = ©

for t in range(numTrials):
sample = random.sample(temps, sampleSize)
sampleMean = sum(sample)/sampleSize
SEM = numpy.std(sample)/sampleSize**0.5
if abs(popMean - sampleMean) > 1.96*SEM:

numBad += 1
print('Fraction outside 95% confidence interval =",
numBad/numTrials)

Fraction outside 95% confidence interval = 0.0511
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Recapping Last Three Lectures

=Using Monte Carlo simulation to build models
> The world is mostly stochastic

o Useful tool even when randomness not present
o Estimating reliability of simulation results
o Don’t confuse statistical assertions with factual assertions

=Understanding populations
o Cannot examine all members

o Rely on sampling
o Estimating validity of conclusions based on samples

o Central Limit Theorem lets us use a single sample, and still
assert inferences with specific confidence levels

=Some math, but goal was to use computation to help develop
intuition

=*Next unit: building models of data
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