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Assigned Reading

Today:
◦ Chapter 17

Next lecture:
◦ Chapter 18
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The mean estimation error is zero

The distribution of the errors in the estimates is a 
normal (or Gaussian) distribution – sometimes also 
called a bell curve

Recall Assumptions for Empirical Rule
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Carl Friedrich Gauss: 1777-1855

Note: not that mean estimate is zero, 
but mean of errors of estimate is zero



If we assume that 
◦ Mean estimation error is zero
◦ Distribution of the errors in the estimates is normal 

(Gaussian) 

Then by computing mean (𝜇𝜇) and standard deviation 
(𝜎𝜎), can set confidence intervals:
◦ ~68% of data within one standard deviation of mean
◦ ~95% of data within 1.96 standard deviations of mean
◦ ~99.7% of data within 3 standard deviations of mean

Common to use 95% confidence interval – state that 
value is in range:

𝜇𝜇 ± 1.96𝜎𝜎

Empirical Rule (recap)
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with 95% confidence
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Generating Normally Distributed Data
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Sampling from 
random.gauss will 
reflect relative 
probabilities of 
distribution below 
(with SD of 100)

What is a Gaussian (or normal) 
distribution?

First, what does it look like?



Output
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• This is a discrete approximation of a Gaussian distribution
• Ideally, for any set of sample values along x axis, this should 

describe probability of seeing that value
• But need to define independent of set of sample values



Probability distribution captures notion of relative 
frequency with which a random variable takes on 
certain values
◦ Discrete random variables drawn from finite set of values
◦ Continuous random variables drawn from real numbers 

between two numbers (i.e., infinite set of values)

For discrete variable, simply list the probability of each 
value, must add up to 1

Continuous case trickier, can’t enumerate probability 
for each of an infinite set of values

Defining Distributions
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Distributions defined by probability density functions 
(PDFs)

PDF at a point describes relative likelihood of that 
sample; more typically used to describe probability that 
a random variable lies between two points

Defines a curve where the values on the x-axis lie 
between minimum and maximum value of the variable
◦ Area under curve between two points is probability of 

example falling within that range 

For small range, PDF can be thought of as defining 
probability at a point

PDF’s
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 Area under curve over small x span defines probability 
of value lying in that range

PDF’s define probabilities
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Limit as span tends to zero defines probability

Area in red is 
probability that 
value lies 
between 1-ε 
and 1+ε



PDF for Normal Distribution
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𝑃𝑃 𝑥𝑥 =
1

𝜎𝜎 2𝜋𝜋
∗ 𝑒𝑒−

(𝑥𝑥−𝜇𝜇)2
2𝜎𝜎2



Output
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Are values on y-axis 
probabilities?

They are densities;
i.e., derivative of 
cumulative 
distribution 
function.

Hence we use 
integration to 
interpret a PDF



Occur a lot!
Nice mathematical properties

Everybody Likes Normal Distributions
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They occur a lot!

Nice mathematical properties
◦ Symmetric around mean
◦ Mean is also mode and median
◦ Area under curve is 1
◦ Its density is infinitely 

differentiable
◦ It is unimodal – its first 

derivative is positive to the left 
of the mean, negative to the 
right of the mean and zero only 
at the mean

Everybody Likes Normal Distributions
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Uniform distributions

Binomial distributions

Exponential distributions

Other, more esoteric, distributions

But There Are Other Distributions!
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All intervals of the same length have the same probability

Probability that a value falls between x and y (where total range 
is a to b) is:

𝑃𝑃 𝑥𝑥,𝑦𝑦 = �
𝑦𝑦 − 𝑥𝑥
𝑏𝑏 − 𝑎𝑎 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ a 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 ≤ 𝑏𝑏

0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
random.uniform(min, max) will draw an element within 
range with uniform probability

Discrete version 

𝑃𝑃 𝑥𝑥 = �
1

|𝑆𝑆| 𝑖𝑖𝑖𝑖 𝑥𝑥 𝜖𝜖 𝑆𝑆

0. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
random.choice(S) will select an element from set with 
uniform probability

Uniform Distributions
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Coin flipping

Dice rolling

Roulette

Waiting times, e.g., arrival 
of bus

Quantization error in 
analog-to-digital conversion

Uniform Distributions: Examples
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What is the probability that a test succeeds exactly k 
times out of n independent trials (e.g., flip a coin n 
times, probability of exactly k heads)?  
If p is probability of success on one trial, then desired 
probability is:

𝑃𝑃 𝑘𝑘 =
𝑛𝑛
𝑘𝑘
𝑝𝑝𝑘𝑘(1 − 𝑝𝑝)𝑛𝑛−𝑘𝑘

where
𝑛𝑛
𝑘𝑘

=
𝑛𝑛!

𝑘𝑘! 𝑛𝑛 − 𝑘𝑘 !
Multinomial distribution generalizes to case of more 
than two, but a discrete, number of outcomes on each 
trial

Binomial Distributions
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aka “n choose k”



Mean:  𝑛𝑛𝑛𝑛
Variance: 𝑛𝑛𝑛𝑛 1 − 𝑝𝑝
If 𝑛𝑛 is large enough, then binomial distribution is 
approximated by a normal distribution, with mean 𝑛𝑛𝑛𝑛
and variance 𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)

Binomial Distributions
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Any problem where have two outcomes on 
each trial, and want to know probability of 
exactly k trials succeeding out of n
◦ If probability of a false positive on test of 

equipment is known, how many independent 
tests are needed to ensure equipment is 
reliable with given probability

◦ Probability of exactly k “heads” in n flips
◦ Suppose individuals with a specific gene have 

a known probability of eventually contracting 
a certain disease. Run a lifetime study on a 
set of individuals, and determine probability 
of number of individuals who will contract 
the disease

Binomial Distributions: Examples
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Suppose p is probability of an event occurring (e.g., a 
molecule of a drug being cleared from the body)

Probability event has not occurred after t time steps 
(e.g., molecule still in body):

(1 − 𝑝𝑝)𝑡𝑡

Exponential Distributions
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Probability density function

𝑓𝑓 𝑥𝑥 = �𝜆𝜆𝑒𝑒
−𝜆𝜆𝜆𝜆 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0

0. 𝑖𝑖𝑖𝑖 𝑥𝑥 < 0
Mean: 1

𝜆𝜆

Variance: 1
𝜆𝜆2

Cumulative distribution function

𝐹𝐹 𝑥𝑥 = �1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0
0 𝑖𝑖𝑖𝑖 𝑥𝑥 < 0

Can generate exponential distributions using 
random.expovariate(lambd), where lambd is 1 divided 
by mean of distribution
Discrete version called the geometric distribution

Exponential Distributions
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Modeling inter-arrival times (time 
between events), e.g.:
◦ cars entering a highway, 
◦ or requests for a Web page, 
◦ or job requests on a server

Time for a radioactive particle to 
decay (clicks on a Geiger counter)
Time until default on payment to 
debt holders
Service time of agents in a system 
(how long a bank teller takes to serve 
a customer)

Exponential Distributions: Examples
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If we assume that 
◦ Mean estimation error is zero
◦ Distribution of the errors in the estimates is normal 

(Gaussian) 

Then by computing mean (𝜇𝜇) and standard deviation 
(𝜎𝜎), can set confidence intervals:
◦ ~68% of data within one standard deviation of mean
◦ ~95% of data within 1.96 standard deviations of mean
◦ ~99.7% of data within 3 standard deviations of mean

Common to use 95% confidence interval – state that 
value is in range:

𝜇𝜇 ± 1.96𝜎𝜎

Back to our Empirical Rule
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with 95% confidence
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So if we have a set of samples of a parameter where:
◦ The distribution of errors from the estimate has zero 

mean and is normally (or Gaussian) distributed,

Then:
◦ The Empirical Rule applies and we can state a range of 

values within which we are confident the actual value 
lies, with a 95% certainty (or some other certainty).

Can we check that Empirical Rule works?
How do we know distribution is normal?

◦ Could measure it empirically and see how well a Gaussian 
fits to it? – Expensive!

◦ May know from first principles that distribution is normal

Where are we?
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SciPy library contains many useful mathematical 
functions used by scientists and engineers

scipy.integrate.quad has up to four arguments
◦ a function or method to be integrated 
◦ a number representing the lower limit of the integration,
◦ a number representing the upper limit of the integration, 

and
◦ an optional tuple supplying values for all arguments, 

except the first, of the function to be integrated

scipy.integrate.quad returns a tuple
◦ Approximation to result
◦ Estimate of absolute error

A Digression
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Checking the Empirical Rule
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Checking Empirical Rule
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Empirical rule really applies to normal distributions

But if binomial distribution approaches normal, is 
empirical rule a decent approximation?

Checking Empirical Rule
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Normal 
distribution:
• 68%
• 95%
• 99.7%



Empirical rule works for normal distributions

But are the outcomes of spins of a roulette wheel 
normally distributed?

No, they are uniformly distributed
◦ Each outcome is equally probable

So, why did the empirical rule work when we analyzed 
betting on roulette?

But: 
Not All Distributions Are Normal
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Because we are reasoning 
not about a single spin, 
but about the mean of a 
set of spins

And the Central Limit 
Theorem applies to that 
mean of the set

Why Did the Empirical Rule Work?
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Make inferences about a population by examining one or more 
random samples drawn from that population
◦ infer property of population based on statistics of sub-population
◦ avoid cost of having to look at entire population, if very large
◦ handle cases where not feasible to sample whole population

With Monte Carlo simulation, generate lots of random samples 
and use them to draw inferences and to compute confidence 
intervals about the inferences using empirical rule
◦ allows us to estimate likelihood of inference
◦ useful when variation in value due to noise or random effects

But suppose we can’t create samples by simulation?
◦ need different approach when can’t simulate randomness

Recall Inferential Statistics
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Alternative to simulation is to directly sample 
from population
Assume each member of population has 
nonzero probability of being included in sample
◦ Select subpopulation by sampling at random

Simple random sampling: each member of 
whole population has equal chance of selection
Not always appropriate

◦ Popular myth: all MIT UGS are CS majors
◦ Take a simple random sample of 100 students

◦ What might you conclude about MIT student majors from 
such a sample?

◦ What might you conclude about views of MIT students 
based on such a sample?

Probability Sampling
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But in simulated sampling over 10,000 trials
◦ 26% of trials have no SAP, 7% no SHASS, 6% no SLOAN
◦ 0.14% with only SOE and SOS and CompSci
◦ so 2 of 1000 times, would conclude only Engineering & Science & 

Computation, but might conclude no SAP a quarter of time

Probability Sampling
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In random sample of 100, expect:
• 1 Architecture & Planning
• 33 Engineering
• 42 Computer Science
• 3 HASS
• 3 Management
• 18 Science
In simulated sampling over 
10,000 trials, saw that on average



Suppose I sample 1% (or 33) of the UG population over 10,000 trials
◦ 64% of trials have no SAP, 42% no SHASS, 40% no SLOAN
◦ 10.3% with only SOE and SOS and Computation
◦ So 1 of 10 times, would conclude only Engineering & Science & 

Computation; might conclude no SAP 2/3rds of time

Probability Sampling
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In random sample of 100, expect:
• 1 Architecture & Planning
• 33 Engineering
• 42 Computer Science
• 3 HASS
• 3 Management
• 18 Science
In simulated sampling over 
10,000 trials, saw that on average



Stratified sampling
◦ Partition population into subgroups
◦ Take simple random sample from each subgroup (size reflects subgroup’s 

relative size)

Useful when there are small subgroups that should be represented (e.g., 
political polls)
Useful when subgroups should be represented proportional to their share of 
population

◦ E.g. if want to get opinions from MIT UG population, for sample of size 100 
randomly pick 1 A&P student, 3 HASS students, 3 Sloan students, etc.

Can be used to reduce the needed size of sample
◦ Variability within subgroups often less than variability in entire population

Requires care to do properly
◦ How many samples to draw from each subgroup?
◦ What are appropriate subgroups?
◦ Why do we think subgroups’ variability is smaller?

We’ll stick to simple random samples

Stratified Sampling
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Using Sampling to Estimate Temperatures
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From U.S. National Centers for Environmental 
Information (NCEI)

Daily high and low temperatures 1961-2015
◦ 21 different US cities

◦ ALBUQUERQUE, BALTIMORE, BOSTON, CHARLOTTE, CHICAGO, 
DALLAS, DETROIT, LAS VEGAS, LOS ANGELES, MIAMI, NEW ORLEANS, 
NEW YORK, PHILADELPHIA, PHOENIX, PORTLAND, SAN DIEGO, SAN 
FRANCISCO, SAN JUAN, SEATTLE, ST LOUIS, TAMPA

◦ 421,848 data points (examples)

Let’s use some code to look at the data

Data

6.0002 LECTURE 8 40



Code getHighs extracts high temperatures from file, 
code getMeansAndSDs computes mean and standard 
deviation for entire population and sample from 
population
numpy.std is function in the numpy module that 
returns the standard deviation
random.sample(population, sampleSize) returns a list 
containing sampleSize randomly chosen distinct 
elements of population
◦ Sampling without replacement
Going to plot using histogram – count number of times 
a particular value occurs

New in Code
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Histogram of Entire Population
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Why is
σ so large?

Is this really a 
normal 
distribution?

Or in oF: 
61.3 +/-17.0

Would like to infer average temperature with some level of confidence.   Empirical 
rule would help if it applies, but if this is not normal, why would sample be normal?



Why large standard deviation:
◦ Including many locations together

◦ Weather in Phoenix different from Boston
◦ Including weather from entire year

◦ In Boston, weather in January not like weather 
in July

Could look at data by month or location 
or year.  But for now, let’s just focus on 
mean temperature.
Can we get a good approximation 
without looking at all the data? 
And this doesn’t really look like a normal 
distribution.  Can we infer something 
with confidence if this is not a normal 
distribution?
◦ Remember that we used empirical rule to 

estimate confidence, and that assumes a 
normal distribution of errors

Some Observations

6.0002 LECTURE 8 43



Histogram of Random Sample of Size 100
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Looks even less like a normal distribution



Population mean = 16.3

Sample mean = 17.1

Standard deviation of population = 9.44

Standard deviation of sample = 10.4

A happy accident, or something we should expect?

Let’s try it 1000 times and plot the results

Means and Standard Deviations
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500 × 375 
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Code in handout extracts sample of size sampleSize, 
computes mean, then repeats this for numSamples
trials and computes the mean of those means

pylab.axvline(x = popMean, color = 'r') 
draws a red vertical line at popMean on the x-axis

There’s also a pylab.axhline function

New in Code
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Draw a sample of 100 measurements from entire set 
of measurements

Compute mean of that sample

Repeat this sampling process 1000 times (each trial 
with a different sample of 100 data points)
◦ Record the mean of each sample trial

Compute the mean of the means  

Try It 1000 Times
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Mean of 1000 Means
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Mean of sample Means = 16.3
Standard deviation of sample means = 0.94

Mean of mean high temperatures, 
100 samples, 1000 trials

Mean high temperature over 
entire population

In comparison



Mean of 1000 Means
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Mean of sample Means = 16.3
Standard deviation of sample means = 0.94

What’s the 95% 
confidence interval?

16.28 +/- 1.96*0.94
Or 14.5 - 18.1

Suppose we want a 
tighter bound?

Includes population 
mean, but still 
pretty wide interval



Will drawing more samples help?
◦ Let’s try increasing from 1000 to 2000 trials
◦ Standard deviation of estimated mean 

temperature goes from 0.943 to 0.946

How about larger samples?
◦ Let’s try increasing sample size from 100 to 200, 

but sticking with 1000 trials
◦ Standard deviation of estimated mean 

temperature goes from 0.943 to 0.662

Getting a Tighter Bound
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Graphical representation of the 
variability of data

Way to visualize uncertainty
◦ Plot mean value and size of variance

Error Bars, a Digression
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https://upload.wikimedia.org/wikipedia/commons/1/1d/Pulse_Rate_Error_Bar_By_Exercise_Level.png

When confidence 
intervals don’t overlap, 
we can conclude that 
means are statistically 
significantly different at 
some level of confidence 
(e.g., 95%).

Overlapping confidence 
intervals does not
imply lack of significance.



Let’s Look at Error Bars for Temperatures
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Empirical rule: 
Using 1.96 * STD accounts for 
95% of normal distribution



Sample Size and Standard Deviation
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Note how sample 
means are close to 
actual mean of 
entire population

Note how size of 
error bars stabilizes 
after about 300 
samples



Going from a sample size of 50 to 600 reduced the 
confidence interval from about 1.2C to about 0.34C.

But we are now looking at 600*100 = 60,000 examples

What has sampling bought us?
◦ “Absolutely Nothing!”
◦ Entire population contained ~422,000 samples

Larger Samples Seem to Be Better
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Mean of means suggests can draw 
inference about population from set of 
samples

But would like to avoid taking lots of 
samples

What if we just took one sample?  
What can we conclude? 

More than you might think, thanks to 
the Central Limit Theorem!

What Can We Conclude from 1 Sample?
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Given a sufficiently large sample:
1) The means of the samples in a 
set of samples (the sample means) 
will be approximately normally 
distributed,
2) This normal distribution will 
have a mean close to the mean of 
the population, and
3) The variance of the sample 
means will be close to the variance 
of the population divided by the 
sample size.

The Central Limit Theorem (CLT)
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Checking CLT for a Continuous Die
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Note: using continuous values 
between 1 and 6

Note: compute average value 
over set of dice



Output
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Mean of rolling 1 die = 3.49759575528, Std = 1.4439045633
Mean of rolling 50 dice = 3.49985051798, Std = 0.204887274645

Distribution of mean values of 1 die -- uniform

Distribution of mean values of 25 dice -- normal



Try It for Roulette
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Betting a Pocket in Fair Roulette
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Sure looks like 
a normal 
distribution



It doesn’t matter what the shape of the distribution of 
values happens to be, we can use the Central Limit 
Theorem to estimate the mean of a population using 
sufficiently large samples

The Central Limit Theorem also allows us to use the 
empirical rule when computing confidence intervals 
associated with an estimated mean

Moral
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5 Minute Break
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Goal: given a population, want to infer properties of 
mean of population
◦ Take a single sample of population
◦ Can measure mean of sample, but is it close to mean of 

population, and with what confidence?
◦ Central Limit Theorem says mean of samples close to 

population mean, and single sample mean close to mean 
of samples if large enough sample size

◦ Empirical rule says if population is normally distributed, 
then standard deviation lets us set confidence level
◦ e.g., values within 1.96 * σ of mean account for 95% of values

◦ Central Limit Theorem suggests empirical rule can work 
even if population not normally distributed, provided we 
can estimate standard deviation of population 

Where are we?
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Given a sufficiently large sample:
◦1) The means of the samples in a set of samples (the 
sample means) will be approximately normally 
distributed,

◦2) This normal distribution will have a mean close to the 
mean the population, and

◦3) The variance of the sample means will be close to the 
variance of the population divided by the sample size.

Time to use the 3rd feature

Compute standard error of the mean (SEM or SE)

Using the Central Limit Theorem
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This should measure standard deviation of sub-
population.

Does it work?

Standard Error of the Mean
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Testing the SEM
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Standard Error of the Mean
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But, we don’t
know standard
deviation of 
population

How might we 
approximate it?



Sample SD vs. Population SD
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Looks like with 
large enough 
sample size, we 
might be able to 
just use the 
sample SD to 
compute SEM



Once sample reaches a 
reasonable size, sample 
standard deviation is a pretty 
good approximation to 
population standard deviation

True only for this example?
◦ Does this depend on 

distribution of population?
◦ Does this depend on size of 

population?

The Point
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Looking at Distributions
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Three Different Distributions
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random.random()

random.gauss(0, 1)

random.expovariate(0.5)



Does Distribution Matter?
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Skew, a measure 
of the asymmetry 
of a probability 
distribution, 
matters

All show same 
convergence, but 
not equally good 
at using sample SD 
for population SD

The more skewed 
a distribution, the 
more samples you 
need for SD to 
become similar



Does Population Size Matter?
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1) Choose sample size based on estimate of skew in 
population

2) Chose a simple random sample of that size from the 
population

3) Compute the mean and standard deviation of that sample

4) Use the standard deviation of that sample as estimate of 
the SE

5) Use the estimated SE (not the stddev!) to generate 
confidence intervals around the sample mean for whole 
population 

To Estimate Mean from a Single Sample!

6.0002 LECTURE 8 75

Works great when we choose independent random samples.

Not always so easy to do, as political polls demonstrate.



Are 200 Samples Enough?
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Fraction outside 95% confidence interval = 0.0511



Using Monte Carlo simulation to build models
◦ The world is mostly stochastic

◦ Useful tool even when randomness not present
◦ Estimating reliability of simulation results

◦ Don’t confuse statistical assertions with factual assertions

Understanding populations
◦ Cannot examine all members
◦ Rely on sampling
◦ Estimating validity of conclusions based on samples
◦ Central Limit Theorem lets us use a single sample, and still 

assert inferences with specific confidence levels

Some math, but goal was to use computation to help develop 
intuition

Next unit: building models of data

Recapping Last Three Lectures
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