PYTHON CLASSES
and INHERITANCE

(download slides and .py files from Stellar to follow along!)

6.0001 LECTURE &

LAST TIME

= Abstract data types using classes

" Coordinateexample

" Fractionexample

TODAY

= Review classes

= More details on classes, class variables

" Inheritance and hierarchies of classes

" Introduction to algorithmic complexity

6.0001 LECTURE 8 p

ASSIGNMENT:
MOBY DICK
PG. 1- 200

Assigned Reading

= Today
* 8.2

°*9.1-9.2

“I don’t like to give a lot of homework over
the weekend, so just read every other word.”

= Next lecture |
. 9.3 “Using Python

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised 083117.pdf

6.0001 LECTURE 8 3

THE POWER OF OBJECT
ORIENTED PROGRAMMING

" Bundle together objects that share
e common attributes and

* procedures that operate on those attributes

= Use abstraction to make a distinction between how to
implement an object versus how to use an object

"= Build layers of object abstractions that inherit A
. behaviors from other classes of objects

_/

basic classes

(= Create our own classes of objects on top of Pyt 1on’sj

_

Another instance of a virtuous cycle — just as defining procedures lets us create new
procedures and treat as if built-in, we can create classes and treat as if built in to Python

6.0001 LECTURE 8 4

IMPLEMENTING USING
HE CLASS vs THE CLASS

= Write code from two different perspectives

Implementing a new Using the new object
object type with a class type in code
* Define theclass * Createinstances of the
* Define data attributes object type
(WHAT IS the object) * Do operations with
* Define methods them

(HOW TO use the object)

Class captures common Instances have specific
propertiesand behaviors |values for attributes

6.0001 LECTURE 8 5

CLASS DEFINITION INSTANCE
OF AN OBJECT TYPE vs OF A CLASS

" Class name is the type " Instance is one specific object
class Coordinate(object) coord = Coordinate (1, 2)
" Class is defined generically | = Data attribute values vary
* Use se1f torefertosome between instances
instance while defining class ¢l = Coordinate (1,2)
(self.x — self.y)=**2 c2 = Coordinate (3,4)

* self IS a parameterto

methods in class definition * c1 and c2 have different data

attribute valuesci.x and c2.x
because they are different

objects

= Class defines data and
methods common across all | ® Instance has the structure of

instances the class

6.0001 LECTURE 8 6

WHY USE OOP AND
CLASSES OF OBJECTS?

* Model or simulate real life — systems of objects

WHY USE OOP AND
CLASSES OF OBJECTS?

* Model or simulate real life — systems of objects

* Group different objects of the same type; capture
common patterns of use

GROUPS OF OBJECTS HAVE
ATTRIBUTES (RECAP)

= Data attributes
* How can you represent your object with data?

* Whatitis
* for a coordinate: x and y values
* for an animal: age, name

= Procedural attributes (behavior/operations/methods)
* How can someone interact with the object?
 Whatit does
* for a coordinate: find distance between two points
* for an animal: make a sound

CREATING INSTANCES (Recap)

"Usually when creating an instance of an object type, we will
want to provide some initial values for the internal data. To
do this,definean init method:

class Coordinate(object): Method is another name for
a procedural attribute, or a
procedure that “belongs” to
this class

def 1init (self, x, y):

self.x = x

self.y =y

9/28/19 10

CREATING INSTANCES (Recap)

"Usually when creating an instance of an object type, we will
want to provide some initial values for the internal data. To

do this,definean init method:

class Coordinate(object):
def init (self, x, y):
self.x = X

self.y =y

When calling a method of an
object, Python always passes
the instance as the first
argument. By convention, we
use self as the name of the
first argument of methods.

9/28/19

11

CREATING INSTANCES (Recap)

"Usually when creating an instance of a type, we will want to
provide some initial values for the internal data. To do this,
definean init method:

class Coordinate(object): When calling a method of an
object, Python always passes

def _ init (self, x, y): the instance as the first

self.x = X argument. By convention, we
use self as the name of the
self.y =y first argument of methods.

"The “.” operator accesses an attribute of an object, so
__init definestwo attributes for new object: x and y.

9/28/19 12

CREATING INSTANCES (Recap)

"Usually when creating an instance of an object type, we will
want to provide some initial values for the internal data. To
do this,definean init method:

class Coordinate(object): When calling a method of an

def init (self, x, y): object, Python always passes
the instance as the first

argument. By convention, we
self.y =y use self as the name of the
first argument of methods.

self.x = x

"The “” operator accesses an attribute of an object, so
__init definestwo attributes for new object: x and y.

When accessing an attribute of an instance, start by looking
within the class definition, then move up to the definition of a
superclass, eventually move to the global environment

9/28/19 13

CREATING INSTANCES (Recap)

"Usually when creating an instance of an object type, we will
want to provide some initial values for the internal data. To
do this,definean init method:

class Coordinate(object): The expression
classname(values...)

creates a new object of type

self.x = x classname and then calls its

__init method with the new

object and values... as the

arguments. When the method is

c = Coordinate finished executing, Python returns

the initialized object as the value.

= 0,0) —

origin = Coordinate(—

def init (self, x, y):

self.y =y

Note that don’t provide
argument for self, Python does
this automatically

print(c.x, origin.x)

9/28/19 15

VISUALIZING THIS IDEA

Coordinate Coordinate.__init__ Procedure bod

¢ = Coordinate(3,4)
Calls
__init__ (sel 4)

This calls

self.x = x ‘

selfy =y \\ \m
So ¢ points to m

Each instance has its own data

origin =.C<.)ordi.nate(0, 0) attributes, both instances inherit
Then origin points to attributes of Coordinate class

9/28/19 16

(62
A
2 \(\‘3 \356
K00 e NS e ©
66‘{\(\\‘ (\3((\ Q’&(e e‘\ of X0 05\ N
CJ\QSS \o\e xO |\ y 3\.\1’65
class||Animal|(object) @ e e 20
" 63\'6 \ \'\\Q ,a(\’é
def| _init_ |(self,| agel) :w™ 3 {05
3x© 20 6\0(’6 A
X el self.age = age o Q\g&“ @
" .
@ = X0 " 3@\‘0 oc®
«° @ \ self.name = None G .\(\5\3 «
C(Ga S 2 \ 20 N\&\\ A
® \\G(\‘ . ({\\"\’b\\ xe'
myanimal |= Animal|(3) RPN R
od X0 \S Qa‘
,a(\ce ((\399 2% 25
o \(\S‘ 6'\’& ° 6@’\
o® S 6355
«

6.0001 LECTURE 8 17

GETTER AND SETTER METHODS
(RECAP)

class Animal (object) :

def 1init (self, age):

.age = age
.name = None
def get age(self):
%ngs return .age
def get name (self):
return .name
def set age(self, newage):
é@gs .age = newage
° def set name(self, newname=""):
.name = newname
. def str (self):
Q«O return "animal:"+str(.name)+":"+str(.age)

= Getters and setters should be used outside of class to
access data attributes

6.0001 LECTURE 8 18

AN INSTANCE and QO‘%“G%@‘?G

| Lo

DOT NOTATION (RECAP) *%¢

* |nstantiation creates an instance of an object

a = Animal (3)

= Dot notation can be used to access attributes (data
and methods) though it is better to use gettersand

setters to access data attributes d\<e°“\;0¢ed
R\ «
3’6—(\\0\) (GCO((\
a. . age 63\.6 &O"
Cec,S \0\)"
a.get age /() ,&&N&»
8‘\\06 ’(\.e(s -
2
% °
¢ x© o
% K@

S

3“6

6.0001 LECTURE 8 19

STUFF
THEY DON'T
E\’ANT YOu
T0 KNOW"

INFORMATION RHIDING

= Author of class definition may change data attribute
variable names

class Animal (object) :

q66§®;6 def init (self, age):
\$ﬁ66¥ﬂq66 self.years|= age
(e%ﬁwﬁe def get age (self):
3

return| self.years

= |[f you are accessing data attributes outside the class and
class definition changes, may get errors a0

. . o .
= Qutside of class, use getters and setters instead PN R\
(\\\‘ ° '\(\S" eS
use a.get age () NOT a.age MR AN g
e good style
* easy to maintain code G0 (e
.\(\5
* prevents bugs ot

6.0001 LECTURE 8 20

PYTHON NOT GREAT AT | [uf
INFORMATION HIDING

= Allows you to access data from outside class definition in
an instance

print (a.age)

10 KNOW"

= Allows you to write to data from outside class definition
to an instance

a.age = 'infinite'

= Allows you to create data attributes for an instance from
outside class definition

a.size = "tiny"

" |t's NOT GOOD STYLE to do any of these!

'DE FRULT INIE00-HOO! THE
TWO SWEETE SWORDS IN THE
ENGLISH LANGURGE.

= Default arguments for formal parameters are used if no
actual argumentis given

def set name (self,| newname="") :

self.name = newname

= Default argument used here
a = Animal (3)

a.set name () wwﬁ

print (a.get name ())

= Argument passed in is used here

a = Animal (3) W

a.set name ("fluffy") @Wﬁ

print (a.get name())

6.0001 LECTURE 8 22

HIERARCHIES i

2
v 3 L : 7 %
: = X -é .

HIERARCHIES

object

= Parent class
(superclass)

= Child class

Animal

/

™~

I

(subclass)

* Inherits all data and
behaviors of parent

Person

Cat

Rabbit

class
e Add more information
e Add more behaviors

° Override behavior

AN

Student

6.0001 LECTURE 8

24

INHERITANCE::
PARENT CLASS

class Animal|(object) :

"
eC
def Init (, age) : » o
©
.age = age :
J 7 \\S\\(\. cv . W
- N N e AC A\
.name = None Sad&gba @ﬂﬁ'
def get age(self): \o° «@ﬁ&.QQ* A
retarn age ‘@Q\e &\0(\6\'6\65‘
. \) (\
el J°
def get name (self): 0?@&@%
A¢)
return .name
def set age(, nhewage) :
.age = newage
def set name(, newname="") :
.name = newname
def str |)
return "animal:"+str(.name) +" :"+str (

6.0001 LECTURE 8

.age)

25

Sl
INHERITANCE: S T

X
\ T \ CARN -\ g
SUBCLASS S
B\ el e\
e(\“ S)
'\‘\\\ c.e"'/3 \\
A\
class Cat|(Animal) : -
" \‘“,\6 def speak () :
\\ A\ rint ("meow"
36600’{‘0(\6 & def) | (;
WO et str :
0\
sQe .((\,é\“: return "cat:"+str (.name) +":"+str(.age)
e
e((.\des ((\e,‘x\Od
O“
Sx(/
~

= Add new functionality with speak ()
* Instance of type Cat can be called with new methods

* Instance of type Animal throws errorif called with Cat’s
new method

[= 1init isnotmissing, usesthe Animal version]

6.0001 LECTURE 8 26

’&\06
USING THE HIERARCHY .« .
.\(\\\6(?&'&‘S_ 6\“660
In [31]: jelly = Cat(l) ‘\‘0((\ e&\\od\/
In [32]: jelly.set name('JellyBelly') G
In [33]: print(jelly) ’&O/«\?’O
cat:JellyBelly:1 <N @6“
((\G‘ Coqe(e,&\\od
In [34]: print(@nimalﬂ_str_] jelly) N © o <«
animal:JellyBelly:1 \ G*Q\\%?&i«ﬁ\
\) \\
In [35]: blob = Animal(l) Ci(\c\e(\\\\
In [36]: print(blob) ot
animal:None:1 \‘3\066
\\3(\%6 o“a(\
In [37]: blob.set name() c;a“(f S0
In [38]: print(blob) a‘“«) oc®
animal::1 .\(\5\3
Animal is a class | . gets associated attribute In this case, __str_ method
for Animal

6.0001 LECTURE 8 27

INHERITANCE

class Cat(Animal):
def speak(self):
print("'meow”)

def str (self):
"cat:"+str(self.name)+":"+str(self.age)

return

class Rabbit(Animal):
def speak(self):
print(“meep”)
def str_ (self):

return “rabbit:"+str(self.name)+":"+str(self.age)

Different subclasses of Animal can specialize methods and attributes (like
speak) while inheriting common methods and attributes (like age and name)

6.0001 LECTURE 8 28

USING THE HIERARCHY

In [31]: jelly = Cat(1l)
In [34]: blob = Animal(1)
In [38]: peter = Rabbit(5) 6“&0
In [39]: jelly.speak() &0
meow = (o
o «@ﬁ
In [40]: peter.speak() \ﬁﬁ@;, x°
meep 8% ™
o
‘('\QS ’1\3,@6:&
In [41]: blob.speak() o>

AttributeError: 'Animal’' object has no
attribute 'speak'

6.0001 LECTURE 8

29

WHICH METHOD TO USE?

* Subclass can have methods with same name as
superclass or other subclass

* For an instance of a class, look for a method of that
name in current class definition

* If not found, look for method of that name up the
hierarchy (in parent, then grandparent, and so on)

* Use first method in the hierarchy that you found with
that method name

6.0001 LECTURE 8 30

class Person(Animal):

def

__init (self, name, age):

Animal. init (self, age)

self.set name (name)

self.friends = []

def

get friends(self):

return self.friends.copy()

def

add friend(self, fname):

if fname not in self.friends:

self.friends.append(fname)

def

speak(self):

print("hello")

def

age diff(self, other):

diff = self.age - other.age

print(abs(diff), "year difference")

_/

%Ver,,

def

str (self):

\/77@

return "person:'+str(self.name)+":"+str(self.aqge)

NS¢ 0@40
th

11;7 Qg

OOIS

Calling Animal constructor gets all attributes of superclass; rest of this
~_init method just adds attributes specific to subclass or instance

6.0001 LECTURE 8

E e
[WorwERaND 2

SN

USING THE HIERARCHY

In [42]: alice = Person(‘Alice’, 29)
In [43]: tarrant = Person(‘Tarrant’, 56)
In [44]: alice.speak() &@60 &@&‘
hello - V“? 5%° o 25>
&< O((\ ((\e (\Ce
\)C)GS .\(\5&3

In [45]: alice.age_diff(tarrant)@W
27 year difference

In [46]: Person.age diff(tarrant,alice)
27 year difference REa

6.0001 LECTURE 8 32

- n
import random 5. Eip
O/hl" f(_/nc .
. QA bb
. //7/7 do Ns
class Student (Person) : 3 @n} 0746
. \Y (9
def 1nit (self, name, age, major=None) : O{m J‘Rsbs)y
Person. init (self, name, age) WUS@S Pe ‘5’2‘1‘,./-6 e ey
self.major = major b/b ’So Yteg
S

def change major(self, major): Q%& Q%;
self.major = major neniy ~ S
def speak(self): Uy
r =|random.random ()
if r < 0.25:
print ("1 have homework™") fan
elif 0.25 <= r < 0.5: N 9’01;,{)
print ("1 need sleep") IO/Q 27 /77@%
elif 0.5 <= r < 0.75: © Sl
print ("i should eat™) =
else:

print ("1 am watching tv")
def str (self):

return "student:"+str(self.name)+":"+str(self.age)+":"+str(self.major)

6.0001 LECTURE 8 33

USING THE HIERARCHY

In [42]: alice = Person(‘Alice’, 45)

F A
{ B WorberlaD) 1

SN

In [47]: tarrant = Student(‘'Tarrant’, 18, ‘Course VI')

In [48]: print(tarrant) «@6 X

student:Tarrant:18:Course VI -
S O

O

In [49]: tarrant.speak() \ Waﬁp

1 have homework ¢¢5&§&

In [50]: tarrant.speak() e 20

i have homework 6@@ &

In [51]: tarrant.speak() .cﬁe(&ﬂ%?ﬂ@

. . \,\ S \oe‘“ 60((\

1 am watching tv @@Q(éa ¢ <&

In [52]: tarrant.speak() &$e®ﬁao

i should eat oe©

6.0001 LECTURE 8

34

INSTANCE CLASS
VARIABLES vs VARIABLES

= we have seen instance = introduce class variables
variables so far in code that belong to the class
= specific to an instance = defined inside class but

outside any class methods,

= created for each : e
outside init

instance, belongs to an

instance " shared among all
objects/instances of that
class

= used the generic variable
name self within the class
definition

self.variable_name

6.0001 LECTURE 8 35

RECALL An1mal CLASS

class Animal (object):

def _ init_ (self, age):
self.age = age
self.name = None

def get age(self):
return self.age

def get name(self):
return self.name

def set age(self, newage):
self.age = newage

def set name(self, newname=""):
self.name = newname

def str (self):

return "animal:"+str(self.name)+":"+str(self.age)

6.0001 LECTURE 8 36

CLASS VARIABLES AND THE
Rabbi1t SUBCLASS

= class variables and their values are shared between all
instances of a class

class Rabbit (Animal) : ‘gﬁﬁ
e
tag |= 1 Q"}(
-a‘o\e def init (self, age, parentl=None, parentZ2=None) :
S _ .
C\%S Animal. 1init (self, age) o€ (\%es \1
\O (,\\3 e
self.parentl = parentl NS o T € C
e self.parent?2 = parent? ,ac@ess %6666\\3‘(06\‘
A A0 X
\\a‘\a self.rid|=|Rabbit.tag ot (\Ces
2 & s
\(\5‘ Rabbit.tag += 1 ,‘0(3\

" £ ag used to give unique id to each new rabbit instance

6.0001 LECTURE 8 37

Rabbit GETTER METHODS

class Rabbit(Animal) :

tag = 1
def init (self, age, parentl=None, parent2=None) :
Animal. init (self, age) ,ﬁ@
— — <O

self.parentl = parentl
self.parent?2 = parent?2
self.rid = Rabbit.tag «@@9 .dﬁ%djﬁ

- RabblF.tag +—.1 «@'~¢§@
get rid(self): Kﬁe
return str(self.rid) Jzfi1ll (5) é§@
) def get_parentl (self): &yﬁ
) return |self .parentl «@ﬁ© g&ﬁvgg -
def get parent2 (self): %e“e(a\Q\Q‘\/)L\SO 2 @{//@q
_ return |self.parent?2 '&0(a?\e?"(ea ’a‘\dq .\/@a\/
def str (self): R ano@(o(ow
return "rabbit:"+ self.get rid() @ﬁwa@QK
Return actual object, in this case a Rabbit \(\\(‘e

6.0001 LECTURE 8 38

EXAMPLE USAGE

In 35:
In 36:
In 37:

In 38:

rl = Rabbit(3)
r2 = Rabbit(1l)
r3 = Rabbit(10)

print("rl:", rl)

rl: rabbit:00001

In 39:

print("r2:", r2)

r2: rabbit:00002

In 40:
rl parentl: None

. YUIIIDON"'LHAUE E@E AFRAID

j” |.s\u y
g s Hﬁ!ﬁ e

£ 4 ”/.”} ,

| THE BLUE SNAKE IS l]gEMl NUW

print("rl parentl:", rl.get parentl())

6.0001 LECTURE 8

40

VISUALIZING THE HIERARCHY

Animal:
__init__
get_ name
__str

Rabbit: Cal!ing Rabbit will crea.te
an instance and use this
__init__ procedure on it
(because that is the one
visible in Rabbit’s
environment)

tag: 1
__init__

6.00.01X LECTURE

41

VISUALIZING THE HIERARCHY

Animal:
__init__
get na
__str

That code uses
Animal.__init__

which will in turn call this
procedure on the
instance

Rabbit:
tag: 1
__init__

6.00.01X LECTURE

42

VISUALIZING THE HIERARCHY

And thus the instance of
Rabbit (because of the
first call, which inherits
from the class definition)
will have bindings set by
the inherited __init__
code

Animal:
__init__
get_name

Rabbit:
tag: 1
__init__

name None

6.00.01X LECTURE 43

VISUALIZING THE HIERARCHY

The rest of the original _init__
code calls

self.rid = Rabbit.tag

which creates a binding in self (i.e.
the instance) to current value of tag
(in class)

Animal:
__init__
get_name

Rabbit:
tag: 1
__init__

6.00.01X LECTURE 44

VISUALIZING THE HIERARCHY

The rest of the original _init__
code calls

self.rid = Rabbit.tag

which creates a binding in self (i.e.
the instance) to current value of tag
(in class)

Animal:
__init__
get_name

And then calls
Rabbit.tag +=1

Rabbit:
tag: 2
__init__

6.00.01X LECTURE 45

VISUALIZING THE HIERARCHY

Thus calling Rabbit a second time to
create a second instance will

Animal;

__init__ execute the same sequence, but
get_name now tag is bound to 2
__str

Rabbit:
tag: 2
__init__

name None

6.00.01X LECTURE 46

VISUALIZING THE HIERARCHY

And this will create a new instance
with a unique id number

Animal:
__init__
get_name

Rabbit:
tag: 3
__init__

6.00.01X LECTURE 'y

WORKING WITH YOUR OWN
TYPES

def add (, Other):

returning object of same type as this class

return |[Rabbit (0, , other)

F N ™~

recall Rabbit’s __1nit (self, age, parentl=None, parentZ2=None)

= Define + operator between two Rabbi t instances

* Definewhatsomethinglikethisdoes:r4 = r1 + r2
where r1 and r2 are Rabbitinstances

* r4disanewRabbitinstance withageO
 r4 has selr as one parentand other as the other parent
*In__init ,parentlandparent2areoftypeRabbit

6.0001 LECTURE 8 48

EXAMPLE USAGE

In [53]: peter = Rabbit(2)

In [54]: peter.set name(Peter')

In [55]: hopsy = Rabbit(3)

In [56]: hopsy.set name('Hopsy')

In [61l]: mopsy = peter + hopsy

In [62]: mopsy.set name(Mopsy')

In [63]: print(mopsy.get parentl())
rabbit:00007

In [64]: mopsy.get_parent](j{get_name(}
Out[64]: 'Peter’

Need these to get actual object |Then access instance’s data

6.0001 LECTURE 8 49

SPECIAL METHOD O [l

= Decide that two rabbits are equal if they have the same two
parents
def eqg | , other):

parents same |= .parentl.rid == other.parentl.rid \

and .parent2.rid == other.parentZ2.rid
parents opposite|= .parent2.rid == other.parentl.rid \

and .parentl.rid == other.parent2.rid

return parents same or parents opposite

" Compare ids of parents since ids are unique (due to class var)
" Note you can’t compare objects directly

* For example, can’t try self.parentl == other.parentl
* This callsthe eq method over and over until call it on None and

gives an AttributeError When it tries to do None.parent1

6.0001 LECTURE 8 10)

EXAMPLE USAGE

In [53]: peter Rabbit(2)

In [54]: peter.set name(Peter')

In [55]: hopsy = Rabbit(3)

In [56]: hopsy.set name('Hopsy')

In [57]: cotton = Rabbit(1l, peter, hopsy)
In [58]: cotton.set name('Cottontail')

In [61l]: mopsy = peter + hopsy

In [62]: mopsy.set name('Mopsy')

In [65]: print(mopsy == cotton)
True

6.0001 LECTURE 8 51

THE POWER OF OBJECT
ORIENTED PROGRAMMING

" Bundle together objects that share
e common attributes and

* procedures that operate on those attributes

= Use abstraction to make a distinction between how to
implement an object versus how to use an object

= Build layers of object abstractions that inherit
behaviors from other classes of objects

= Create our own classes of objects on top of Python’s
basic classes

| 1 FOOD GROUPS |

Ry o)

5 Minute Break Debuggingyourpset -

STUDENTS AFTER HEARING
*ymABOUTFROIECT. =
N O

ssssss

6.0001 LECTURE 8

PROGRAM
EFFICIENCY

WRITING EFFICIENT
PROGRAMS

= So far, we have emphasized correctness. It is the first thing

to worry about!
" But sometimesthatis not enough

" Problems can be very complex (as we shall see when we
get to optimizationin 6.0002)

= But data sets can be

tweets

very large: in 2014 |
G I d n Facebook processes 350GB ofdata / |
oogle serve &

30,000,000,000,000 100 hours of new video are upIoadedV
. on YouTube
pages covering

100'000’000 GB of data L)‘ Google processes more than 2 IMIIIION seach

queries

6.0001 LECTURE 8 56

@ Twitter users send out 277,000 EVERY MINUTE

EFFICIENCY IS IMPORTANT

= Separate time and space efficiency of a program

" Tradeoff between them: can use up a bit more
memory to store values for quicker lookup later

" Challenges in understanding efficiency
* A program can be implemented in many different ways

* You can solve a problem using only a handful of different
algorithms

= Want to separate choice of implementation from
choice of more abstract algorithm

6.0001 LECTURE 8 57

A tester has the heart
of a developer.....

FVALUATING PROGRAMS | ===

= Measure with a timer

= Count the operations

= Abstract notion of order of growth

TIMING A PROGRAM ;

= Use time module import time

= Recall that
importing meansto def c_to_f(c):
bring in that class return c*9.0/5 + 32

into your own file

= Startclock —— t0 = time.clock()

= Call function —— ¢_to_£(100000)

= Stop clock __» t1 = time.clock() - tO

print("t :"’ tl, "S’")

6.0001 LECTURE 8 59

TIMING PROGRAMS S
INCONSISTENT

= GOAL: to evaluate different algorithms

= Running time varies between algorithms v
= Running time varies between implementations ¥

= Running time varies between computers) 4

= Running time is not predictable for small inputs 3¢

= Time varies for differentinputs but
cannot really express a relationship
between inputs and time

6.0001 LECTURE 8 60

= Assume these steps take

constant time:

* Mathematical operations

* Comparisons
* Assignments

* Accessing objectsin
memory

= Count number of
operations executed as
function of size of input

def c to f(c):
return

c*9.0/5 + 32

def mysum(x) :

6.0001 LECTURE 8

total = 0

2 OQS

for |1 1n range (x+1l) :

total += 1

return total
"LO

mysum =2 1+3(x+1) ops

A o?

Q‘D

61

COUNTING OPERATIONS IS
BETTER, BUT ...

= GOAL: to evaluate different algorithms

= Count depends on algorithm v
=" Count depends on implementations X
= Count independent of computers v

X

= No real definition of which operations to count

v

= Countvaries for differentinputs and
can come up with a relationship
between inputs and the count

.. STILL NEED A BETTER WAY

* Timing and counting evaluate implementations

* Timing and counting evaluate machines

* Want to evaluate algorithm

* Want to evaluate scalability

* Want to evaluate in terms of input size

WHAT IF I'TOLD YOU

\
A BETTER WAY 'I'IIEIIE IS A BETTER WAY

= Focus on idea of counting operations in an algorithm, but
not worry about small variationsin implementation

" Focus on how algorithm performs when size of problem
gets arbitrarily large

= Want to relate time needed to complete a computation,
measured this way, against the size of the input to the
problem

= Need to decide what to measure, given that actual
number of steps may depend on specifics of trial

6.0001 LECTURE 8 64

OW TO CHOOSE WHICH INPUT TO
USE TO EVALUATE A FUNCTION

= Want to express efficiencyin terms of input, so need
to decide what is your input

" Could be an integer
--mysum (x)

" Could be length of list
--list sum(L)

" You decide when multiple parameters to a function
--search for elmt (L, e)

6.0001 LECTURE 8 65

DIFFERENT INPUTS CHANGE

HOW THE PROGRAM

RUNS

= A function that searches for an elementin a list

def search for elmt(L, e):
for 1 in L:
1f 1 == e:
return True
return False

= When e is first element in the list > BEST CASE
= When e is not in list 2> WORST CASE

* When look through about half of the elements in

list > AVERAGE CASE

= Want to measure this behavior in a general way

BEST, AVERAGE, WORST CASES

" Consider thatyou are given a list L. of some length 1en (L)

" Best case: minimum running time over all possible inputs of
a givensize, len (L)

* Constant for search for elmt

* First element in any list

" Average case: average runningtime over all possible inputs
of a given size, 1en (L)
* Practical measure

= Worst case: maximum running time over all possible inputs
of a given size, 1en (L)

* Linear in length of list for search for elmt
* Must search entire list and not find it
* Focus on worst case in this class

6.0001 LECTURE 8 67

ORDERS OF GROWTH

= Want to evaluate programs when input is very big

= Want to express the growth of program’s run time
= Want to put an upper bound on growth
* Do not need to be precise: “order of” not “exact” growth

= We will look at largest factorsin run time (which section
of the program will take the longest to run?)

6.0001 LECTURE 8 68

MEASURING ORDER OF
GROWTH: BIG O() NOTATION

" Big Oh notation measures an upper bound on the
asymptotic growth, often called order of growth

" Big Oh or O() is used to describe worst case

* Worst case occurs often and is the bottleneck when a program
runs

* Express rate of growth of program relative to the input
* Evaluate algorithm not machine or implementation

* A technicality

 When we say that the complexity of fis O(n), we mean that its
asymptotic growth is not worse than linear in n.

* It is an upper bound, not necessarily a tight bound

* In practice, we are usually looking for something close to a
tight bound

6.0001 LECTURE 8 69

EXACT STEPS vs O)

def fact iter (n):
"""assumes n an int >= Oo"""

answer = 1
while n > 1: “ﬁ
answer *= n 0~
n -= 1 «ﬂ;«ﬂ@
return answer ©
= Computes factorial
N\
X

= Number of steps: x1°

= Worst case asymptotic complexity: oY
* Ignore additive constants
* Ignore multiplicative constants

70

6.0001 LECTURE 8

WHAT DOES O(N) MEASURE?

" Interested in describing how amount of time needed
grows as size of (input to) problem grows

= Given an expression for the number of operations
needed to compute an algorithm, want to know
asymptotic behavior as size of problem gets large

= Will focus on term that grows most rapidly

= |lgnore multiplicative constants, since want to know
how rapidly time required increases as increase size of
input

6.0001 LECTURE 8 71

SIMPLIFICATION EXAMPLES

= Drop constants and multiplicative factors

" Focus on dominant term

: n? + 2n + 2
o) : n? + 100000n + 31000

om : log(n) + n + 4

ANALYZING PROGRAMS AND
THEIR COMPLEXITY

= Combine complexity classes
* Analyze statementsinside functions

* Apply somerules, focus on dominantterm

Law of Addition for O():
* Used with sequential statements
* O(f(n)) + O(g(n)) is O(f(n) + g(n))
* Forexample,

for 1 1n range(n): OUﬂ

print('a')

for 7 1in range(n*n) :
2
print ('b"'") o(n*)

is O(n) + O(n*n) = O(n+n?) = O(n?) because of dominant term

ANALYZING PROGRAMS AND
THEIR COMPLEXITY

= Combine complexity classes
* Analyze statementsinside functions

* Apply somerules, focus on dominantterm

Law of Multiplication for O():
* Used with nested statements/loops

* O(f(n)) * O(g(n)) is O(f(n) * g(n))

* Forexample,
for 1 in range (n) : o(n)
for 7 1in range(n): h o
for eac
print 'a' o(n) 1
is O(n)*0O(n) = O(n*n) = 0O(n?) because the outer loop goes n
times and theinner loop goes n times for every outer loop iter.

6.0001 LECTURE 8 75

COMPLEXITY CLASSES

" O(1) denotes constant running time

* O(log n) denotes logarithmic running time
" O(n) denotes linear running time
" O(n log n) denotes log-linear running time

" O(n°) denotes polynomial running time (cis a
constant)

" O(c") denotes exponential running time (c is a
constant being raised to a power based on size of
input)

6.0001 LECTURE 8 76

COMPLEXITY CLASSES
ORDERED LOW TO HIGH

O (1) : constant — |

O(log n) I <— logarithmic
T

O (n) : linear — l/

E ; ;

O(n log n): I — loglinear

A
) O (n°) ; polynomial— |
C‘\S &a(\‘
o

O (c™) ; 4 <— exponential

COMPLEXITY GROWTH

0O(1)

O(log n) 1 2 3 6

O(n) 10 100 1000 1000000

O(n log n) 10 200 3000 6000000

O(n?) 100 10000 1000000 1000000000000
0(2") 1024 12676506 1071°08007186267320948425 Goad | yck!!

0490600018105614048117055

00228229 3360744375038837035105112
4936122493198378815695858

40149670 1575946729175531468251871

3205376 4528569231404359845775746
9857480393456777482423098
5421074605062371141877954
1821530464749835819412673
9876755916554394607706291
4571196477686542167660429
8316526243868372056680693
76

6.0001 LECTURE 8 78

NEXT TIME

=*You will see examples of each of these complexity
classes

=You will learn how to recognize algorithmic patterns
that are characteristic of each class

6.0001 LECTURE 8 79

