
PYTHON	CLASSES	
and	INHERITANCE
(download	slides	and	.py files	from	Stellar	to	follow	along!)

6.0001	 LECTURE	8

6.0001	LECTURE	8 1



LAST	TIME
§ Abstract	data	types	using	classes	
§ Coordinate example
§ Fraction example

§ Review	classes
§More	details	on	classes,	class	variables
§ Inheritance	and	hierarchies	of	classes
§ Introduction	to	algorithmic	complexity

6.0001	LECTURE	8 2

TODAY



Assigned	Reading
§ Today
• 8.2
• 9.1	– 9.2

§ Next	lecture
• 9.3

6.0001	LECTURE	8 3

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised_083117.pdf



THE	POWER	OF	OBJECT	
ORIENTED	PROGRAMMING
§ Bundle	together	objects that	share
• common	attributes	and
• procedures	that	operate	on	those	attributes

§ Use	abstraction to	make	a	distinction	between	how	to	
implement	an	object	versus	how	to	use	an	object
§ Build	layers of	object	abstractions	that	inherit	
behaviors	from	other	classes	of	objects
§ Create	our	own	classes	of	objects	on	top	of	Python’s		
basic	classes

6.0001	LECTURE	8 4

Another	 instance	of	a	virtuous	cycle	– just	as	defining	procedures	 lets	us	create	new	
procedures	and	treat	as	if	built-in,	we	can	create	classes	 and	treat	as	if	built	 in	to	Python



IMPLEMENTING	 USING
THE	CLASS													vs	 THE	CLASS

Implementing a	new	
object	type	with	a	class
• Define the	class
• Define	data	attributes
(WHAT	IS	the	object)
• Define	methods
(HOW	TO	use	the	object)

6.0001	LECTURE	8 5

Using the	new	object	
type	in	code
• Create	instances of	the	
object	type
• Do	operationswith	
them

§Write	code	from	two	different	perspectives

Class	captures	common	
properties	and	behaviors	

Instances	have	specific	
values	for	attributes



CLASS	DEFINITION	 INSTANCE	
OF	AN	OBJECT	TYPE			vs			OF	A	CLASS
§ Class	name	is	the	type
class Coordinate(object)

§ Class	is	defined	generically
• Use	self to	refer	to	some	
instance	while	defining	class

(self.x – self.y)**2

• self is	a	parameter	to	
methods	in	class	definition	

§ Class	defines	data	and	
methods	common	across	all	
instances

6.0001	LECTURE	8 6

§ Instance	is	one	specific	object
coord = Coordinate(1,2)

§ Data	attribute	values	vary	
between	instances
c1 = Coordinate(1,2)
c2 = Coordinate(3,4)

• c1 and c2 have	different	data	
attribute	values	c1.x and	c2.x
because	they	are	different	
objects

§ Instance	has	the	structure	of	
the	class



WHY	USE	OOP	AND	
CLASSES	OF	OBJECTS?
•Model	or	simulate	real	life	– systems	of	objects

6.0001	LECTURE	8 7



WHY	USE	OOP	AND	
CLASSES	OF	OBJECTS?
•Model	or	simulate	real	life	– systems	of	objects
• Group	different	objects	of	the	same	type;	capture	
common	patterns	of	use

6.0001	LECTURE	8 8



GROUPS	OF	OBJECTS	HAVE	
ATTRIBUTES	(RECAP)
§ Data	attributes
• How	can	you	represent	your	object	with	data?
• What	it	is
• for	a	coordinate:	x	and	y	values
• for	an	animal:	age,	name

§ Procedural	attributes	(behavior/operations/methods)
• How	can	someone	interact	with	the	object?
• What	it	does
• for	a	coordinate:	find	distance	between	two	points
• for	an	animal:	make	a	sound

6.0001	LECTURE	8 9



CREATING	INSTANCES	(Recap)
§Usually	when	creating	an	instance	of	an	object	type,	we	will	
want	to	provide	some	initial	values	for	the	internal	data.		To	
do	this,	define	an	__init__method:
class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

Method	is	another	name	for	
a	procedural	attribute,	or	a	
procedure	that	“belongs”	to	
this	class

9/28/19 10



CREATING	INSTANCES	(Recap)
§Usually	when	creating	an	instance	of	an	object	type,	we	will	
want	to	provide	some	initial	values	for	the	internal	data.		To	
do	this,	define	an	__init__method:
class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

When	calling	 a	method	of	an	
object,	Python	always	passes	
the	 instance	as	the	first	
argument.	 	By	convention,	we	
use	self as	the	name	of	the	
first	argument	of	methods.

9/28/19 11



CREATING	INSTANCES	(Recap)
§Usually	when	creating	an	instance	of	a	type,	we	will	want	to	
provide	some	initial	values	for	the	internal	data.		To	do	this,	
define	an	__init__method:
class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

§The	“.”	operator	accesses	an	attribute	of	an	object,	so	
__init__defines	two	attributes	for	new	object:	x and	y.

When	calling	 a	method	of	an	
object,	Python	always	passes	
the	 instance	as	the	first	
argument.	 	By	convention,	we	
use	self as	the	name	of	the	
first	argument	of	methods.

9/28/19 12



CREATING	INSTANCES	(Recap)
§Usually	when	creating	an	instance	of	an	object	type,	we	will	
want	to	provide	some	initial	values	for	the	internal	data.		To	
do	this,	define	an	__init__method:
class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

§The	“.”	operator	accesses	an	attribute	of	an	object,	so	
__init__defines	two	attributes	for	new	object:	x and	y.

When	calling	 a	method	of	an	
object,	Python	always	passes	
the	 instance	as	the	first	
argument.	 	By	convention,	we	
use	self as	the	name	of	the	
first	argument	of	methods.

9/28/19 13

When	accessing	 an	attribute	 of	an	instance,	start	by	looking	
within	the	class	 definition,	then	move	up	to	the	definition	 of	a	
superclass,	 eventually	move	to	the	global	environment



CREATING	INSTANCES	(Recap)
§Usually	when	creating	an	instance	of	an	object	type,	we	will	
want	to	provide	some	initial	values	for	the	internal	data.		To	
do	this,	define	an	__init__method:
class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

c = Coordinate(3,4)

origin = Coordinate(0,0)

print(c.x, origin.x)

The	expression
classname(values…)

creates	a	new	object	of	type	
classname and	then	calls	 its	
__init__ method	with	the	new	
object	and	values… as	the	
arguments.	 	When	the	method	is	
finished	 executing,	 Python	returns	
the	 initialized	 object	as	the	value.

Note	that	don’t	provide	
argument	for	self,	Python	does	
this	automatically

9/28/19 15



VISUALIZING	THIS	IDEA

__init__

x:3,	y:4

Procedure	body

9/28/19 16

Coordinate Coordinate.__init__

c	=	Coordinate(3,4)
Calls	
__init__(self,	 3,	4)

This	calls	
self.x =	x
self.y =	y

So	c	points	to	

origin	=	Coordinate(0,	0)
Then	origin	points	to	

x:0,	y:0

Each	instance	 has	its	own	data	
attributes,	 both	instances	 inherit	
attributes	 of Coordinate	class



DEFINING	ANIMAL CLASS

class Animal(object):

def __init__(self, age):

self.age = age

self.name = None

myanimal = Animal(3)

6.0001	LECTURE	8 17



GETTER	AND	SETTER	METHODS	
(RECAP)
class Animal(object):

def __init__(self, age):
self.age = age
self.name = None

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

§ Getters	and	setters	should	be	used	outside	of	class	to	
access	data	attributes

6.0001	LECTURE	8 18



AN	INSTANCE	and	
DOT	NOTATION	(RECAP)
§ Instantiation	creates	an	instance	of	an	object
a = Animal(3)

§ Dot	notation	can	be	used	to	access	attributes	(data	
and	methods)	though	it	is	better	to	use	getters	and	
setters	to	access	data	attributes
a.age

a.get_age()

6.0001	LECTURE	8 19



INFORMATION	HIDING
§ Author	of	class	definition	may	change	data	attribute	
variable	names

class Animal(object):
def __init__(self, age):

self.years = age
def get_age(self):

return self.years

§ If	you	are	accessing	data	attributes	outside	the	class	and	
class	definition	changes,	may	get	errors
§ Outside	of	class,	use	getters	and	setters	instead	
use	a.get_age() NOT	a.age
• good	style
• easy	to	maintain	code
• prevents	bugs

6.0001	LECTURE	8 20



PYTHON	NOT	GREAT	AT	
INFORMATION	HIDING
§ Allows	you	to	access	data	from	outside	class	definition	in	
an	instance
print(a.age)

§ Allows	you	to	write	to	data	from	outside	class	definition	
to	an	instance
a.age = 'infinite'

§ Allows	you	to	create	data	attributes	for	an	instance	from	
outside	class	definition
a.size = "tiny"

§ It’s	NOT	GOOD	STYLE	to	do	any	of	these!	

6.0001	LECTURE	8 21



DEFAULT	ARGUMENTS
§ Default	arguments	for	formal	parameters	are	used	if	no	
actual	argument	is	given
def set_name(self, newname=""):

self.name = newname

§ Default	argument	used	here	
a = Animal(3)

a.set_name()

print(a.get_name())

§ Argument	passed	in	is	used	here
a = Animal(3)

a.set_name("fluffy")

print(a.get_name())
6.0001	LECTURE	8 22



HIERARCHIES

6.0001	LECTURE	8 23



Animal

Cat RabbitPerson

HIERARCHIES
§ Parent	class
(superclass)

§ Child	class
(subclass)
• Inherits all	data	and	
behaviors	of	parent	
class
• Addmore	information
• Addmore	behaviors	
• Override behavior

Student

6.0001	LECTURE	8 24

object



INHERITANCE:
PARENT	CLASS
class Animal(object):

def __init__(self, age):
self.age = age
self.name = None

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

6.0001	LECTURE	8 25



INHERITANCE:	
SUBCLASS	

class Cat(Animal):

def speak(self):

print("meow")

def __str__(self):
return "cat:"+str(self.name)+":"+str(self.age)

§ Add	new	functionality	with	speak()
• Instance	of	type	Cat can	be	called	with	new	methods
• Instance	of	type	Animal throws	error	if	called	with	Cat’s	
new	method

§ __init__ is	not	missing,	uses	the	Animal version
6.0001	LECTURE	8 26



USING	THE	HIERARCHY
In [31]: jelly = Cat(1)
In [32]: jelly.set_name('JellyBelly')
In [33]: print(jelly)
cat:JellyBelly:1

In [34]: print(Animal.__str__(jelly)
animal:JellyBelly:1

In [35]: blob = Animal(1)
In [36]: print(blob)
animal:None:1

In [37]: blob.set_name()
In [38]: print(blob)
animal::1

6.0001	LECTURE	8 27

Animal	 is	a	class .	gets	associated	 attribute In	this	case,	__str__	method	
for	Animal



INHERITANCE
class Cat(Animal):

def speak(self):
print("meow”)

def __str__(self):
return "cat:"+str(self.name)+":"+str(self.age)

class Rabbit(Animal):
def speak(self):

print(”meep”)
def __str__(self):

return ”rabbit:"+str(self.name)+":"+str(self.age)

6.0001	LECTURE	8 28

Different	 subclasses	 of	Animal	can	specialize	methods	and	attributes	 (like	
speak)	while	inheriting	common	methods	and	attributes	 (like	age	and	name)



USING	THE	HIERARCHY
In [31]: jelly = Cat(1)
In [34]: blob = Animal(1)
In [38]: peter = Rabbit(5)
In [39]: jelly.speak()
meow

In [40]: peter.speak()
meep

In [41]: blob.speak()
AttributeError: 'Animal' object has no 
attribute 'speak'

6.0001	LECTURE	8 29



WHICH	METHOD	TO	USE?
• Subclass	can	have	methods	with	same	name	as	
superclass	or	other	subclass
• For	an	instance	of	a	class,	look	for	a	method	of	that	
name	in	current	class	definition
• If	not	found,	look	for	method	of	that	name	up	the	
hierarchy	(in	parent,	then	grandparent,	and	so	on)
• Use	first	method	in	the	hierarchy	that	you	found	with	
that	method	name

6.0001	LECTURE	8 30



class Person(Animal):
def __init__(self, name, age):

Animal.__init__(self, age)
self.set_name(name)
self.friends = []

def get_friends(self):
return self.friends.copy()

def add_friend(self, fname):
if fname not in self.friends:

self.friends.append(fname)
def speak(self):

print("hello")
def age_diff(self, other):

diff = self.age - other.age
print(abs(diff), "year difference")

def __str__(self):
return "person:"+str(self.name)+":"+str(self.age)

6.0001	LECTURE	8 31

Calling	Animal	constructor	gets	all	attributes	of	superclass;	 rest	of	this	
__init__	method	just	adds	attributes	 specific	 to	subclass	or	instance



USING	THE	HIERARCHY
In [42]: alice = Person(‘Alice’, 29)
In [43]: tarrant = Person(‘Tarrant’, 56)
In [44]: alice.speak()
hello

In [45]: alice.age_diff(tarrant)
27 year difference

In [46]: Person.age_diff(tarrant,alice)
27 year difference

6.0001	LECTURE	8 32



import random

class Student(Person):

def __init__(self, name, age, major=None):

Person.__init__(self, name, age)
self.major = major

def change_major(self, major):

self.major = major
def speak(self):

r = random.random()

if r < 0.25:
print("i have homework")

elif 0.25 <= r < 0.5:
print("i need sleep")

elif 0.5 <= r < 0.75:

print("i should eat")
else:

print("i am watching tv")

def __str__(self):
return "student:"+str(self.name)+":"+str(self.age)+":"+str(self.major)

6.0001	LECTURE	8 33



USING	THE	HIERARCHY
In [42]: alice = Person(‘Alice’, 45)
In [47]: tarrant = Student(‘Tarrant’, 18, ‘Course VI’)
In [48]: print(tarrant)
student:Tarrant:18:Course VI

In [49]: tarrant.speak()
i have homework
In [50]: tarrant.speak()
i have homework
In [51]: tarrant.speak()
i am watching tv
In [52]: tarrant.speak()
i should eat

6.0001	LECTURE	8 34



INSTANCE	 CLASS
VARIABLES	 						vs		 VARIABLES
§ we	have	seen	instance	
variables so	far	in	code
§ specific	to	an	instance
§ created	for	each	
instance,	belongs	to	an	
instance
§ used	the	generic	variable	
name	self	within	the	class	
definition
self.variable_name

6.0001	LECTURE	8 35

§ introduce	class	variables	
that	belong	to	the	class
§ defined	inside	class	but	
outside	any	class	methods,	
outside	__init__

§ shared among	all	
objects/instances	of	that	
class	



RECALL	Animal CLASS
class Animal(object):

def __init__(self, age):
self.age = age
self.name = None

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

6.0001	LECTURE	8 36



CLASS	VARIABLES	AND	THE	
Rabbit SUBCLASS
§ class	variables	and	their	values	are	shared	between	all	
instances	of	a	class
class Rabbit(Animal):

tag = 1

def __init__(self, age, parent1=None, parent2=None):

Animal.__init__(self, age)

self.parent1 = parent1

self.parent2 = parent2

self.rid = Rabbit.tag

Rabbit.tag += 1

§ tag used	to	give	unique	id	to	each	new	rabbit	instance

6.0001	LECTURE	8 37



Rabbit GETTER	METHODS
class Rabbit(Animal):

tag = 1
def __init__(self, age, parent1=None, parent2=None):

Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

def get_rid(self):
return str(self.rid).zfill(5)

def get_parent1(self):
return self.parent1

def get_parent2(self):
return self.parent2

def __str__(self):
return "rabbit:"+ self.get_rid()

6.0001	LECTURE	8 38

Return	actual	object,	 in	this	case	a	Rabbit



EXAMPLE	USAGE
In 35: r1 = Rabbit(3)
In 36: r2 = Rabbit(1)
In 37: r3 = Rabbit(10)

In 38: print("r1:", r1)
r1: rabbit:00001

In 39: print("r2:", r2)
r2: rabbit:00002

In 40: print("r1 parent1:", r1.get_parent1())
r1 parent1: None

6.0001	LECTURE	8 40



VISUALIZING	THE	HIERARCHY
Animal:
__init__
get_name
__str__

Rabbit:
tag:	1
__init__
__str__

Calling	Rabbit	will	create	
an	instance	and	use	this	
__init__	 procedure	on	it	
(because	 that	is	the	one	
visible	 in	Rabbit’s	
environment)

6.00.01X	LECTURE 41



VISUALIZING	THE	HIERARCHY
Animal:
__init__
get_name
__str__

Rabbit:
tag:	1
__init__
__str__

That	code	uses	
Animal.__init__
which	will	in	turn	call	 this	
procedure	on	the	
instance

6.00.01X	LECTURE 42



VISUALIZING	THE	HIERARCHY

name

age 3

name None

Animal:
__init__
get_name
__str__

Rabbit:
tag:	1
__init__
__str__

And	thus	the	 instance	 of	
Rabbit	 (because	 of	the	
first	call,	which	inherits	
from	the	class	definition)	
will	have	bindings	set	by	
the	 inherited	__init__	
code

6.00.01X	LECTURE 43



VISUALIZING	THE	HIERARCHY

name

age 3

name None

rid 1

Animal:
__init__
get_name
__str__

Rabbit:
tag:	1
__init__
__str__

The	rest	of	the	original	__init__	
code	calls
self.rid =	Rabbit.tag
which	creates	a	binding	 in	self	(i.e.	
the	 instance)	to	current	value	of	tag	
(in	class)

6.00.01X	LECTURE 44



VISUALIZING	THE	HIERARCHY

name

age 3

name None

rid 1

Animal:
__init__
get_name
__str__

Rabbit:
tag:	2
__init__
__str__

The	rest	of	the	original	__init__	
code	calls
self.rid =	Rabbit.tag
which	creates	a	binding	 in	self	(i.e.	
the	 instance) to	current	value	of	tag	
(in	class)

And	then	calls
Rabbit.tag +=	1

6.00.01X	LECTURE 45



VISUALIZING	THE	HIERARCHY
Animal:
__init__
get_name
__str__

Rabbit:
tag:	2
__init__
__str__

Thus	calling	Rabbit	a	second	time	to	
create	a	second	 instance	will	
execute	 the	same	sequence,	 but	
now	tag	is	bound	to	2

6.00.01X	LECTURE 46

name

age 1

name None



VISUALIZING	THE	HIERARCHY

name

age 1

name None

rid 2

Animal:
__init__
get_name
__str__

Rabbit:
tag:	3
__init__
__str__

And	this	will	create	a	new	instance	
with	a	unique	 id	number

6.00.01X	LECTURE 47



WORKING	WITH	YOUR	OWN	
TYPES
def __add__(self, other):

# returning object of same type as this class

return Rabbit(0, self, other)

§ Define	+	operator	between	two	Rabbit instances
• Define	what	something	like	this	does:	r4 = r1 + r2

where	r1 and	r2 are	Rabbit instances
• r4 is	a	new	Rabbit instance	with	age	0
• r4 has	self as	one	parent	and	other as	the	other	parent
• In	__init__,	parent1and	parent2 are	of	type	Rabbit

6.0001	LECTURE	8 48

recall	Rabbit’s	__init__(self, age, parent1=None, parent2=None)



EXAMPLE	USAGE
In [53]: peter = Rabbit(2)
In [54]: peter.set_name('Peter')
In [55]: hopsy = Rabbit(3)
In [56]: hopsy.set_name('Hopsy')
In [61]: mopsy = peter + hopsy
In [62]: mopsy.set_name('Mopsy')
In [63]: print(mopsy.get_parent1())
rabbit:00007

In [64]: mopsy.get_parent1().get_name()
Out[64]: 'Peter'

6.0001	LECTURE	8 49

Need	these	to	get	actual	object Then	access	instance’s	data



SPECIAL	METHOD	TO	
COMPARE	TWO	Rabbits
§ Decide	that	two	rabbits	are	equal	if	they	have	the	same	two	
parents
def __eq__(self, other):

parents_same = self.parent1.rid == other.parent1.rid \

and self.parent2.rid == other.parent2.rid

parents_opposite = self.parent2.rid == other.parent1.rid \

and self.parent1.rid == other.parent2.rid

return parents_same or parents_opposite

§ Compare	ids	of	parents	since	ids	are	unique	(due	to	class	var)
§ Note	you	can’t	compare	objects	directly
• For	example,	 can’t	try	self.parent1 == other.parent1
• This	calls	the	__eq__ method	over	and	over	until	call	it	on	None and	
gives	an	AttributeError when	 it	tries	to	do	None.parent1

6.0001	LECTURE	8 50



EXAMPLE	USAGE
In [53]: peter = Rabbit(2)
In [54]: peter.set_name('Peter')
In [55]: hopsy = Rabbit(3)
In [56]: hopsy.set_name('Hopsy')
In [57]: cotton = Rabbit(1, peter, hopsy)
In [58]: cotton.set_name('Cottontail')
In [61]: mopsy = peter + hopsy
In [62]: mopsy.set_name('Mopsy')

In [65]: print(mopsy == cotton)
True

6.0001	LECTURE	8 51



THE	POWER	OF	OBJECT	
ORIENTED	PROGRAMMING
§ Bundle	together	objects that	share
• common	attributes	and
• procedures	that	operate	on	those	attributes

§ Use	abstraction to	make	a	distinction	between	how	to	
implement	an	object	versus	how	to	use	an	object
§ Build	layers of	object	abstractions	that	inherit	
behaviors	from	other	classes	of	objects
§ Create	our	own	classes	of	objects	on	top	of	Python’s		
basic	classes

6.0001	LECTURE	8 52



5	Minute	Break	

6.0001	LECTURE	8 53

Debugging your pset



PROGRAM	
EFFICIENCY

6.0001	LECTURE	8 55



WRITING	EFFICIENT	
PROGRAMS
§ So	far,	we	have	emphasized	correctness.	It	is	the	first	thing	
to	worry	about!
§ But	sometimes	that	is	not	enough
§ Problems	can	be	very	complex	(as	we	shall	see	when	we	
get	to	optimization	in	6.0002)

§ But	data	sets	can	be	
very	large:	in	2014	
Google	served	
30,000,000,000,000	
pages	covering	
100,000,000	GB	of	data

6.0001	LECTURE	8 56



EFFICIENCY	IS	IMPORTANT
§ Separate	time	and	space	efficiency	of	a	program

§ Tradeoff	between	them:	can	use	up	a	bit	more	
memory	to	store	values	for	quicker	lookup	later

§ Challenges	in	understanding	efficiency
• A	program	can	be	implemented	in	many	different	ways
• You	can	solve	a	problem	using	only	a	handful	of	different	
algorithms

§Want	to	separate	choice	of	implementation	from	
choice	of	more	abstract	algorithm

6.0001	LECTURE	8 57



EVALUATING	PROGRAMS
§Measure	with	a	timer
§ Count	the	operations
§ Abstract	notion	of	order	of	growth

6.0001	LECTURE	8 58



TIMING	A	PROGRAM
§ Use	time	module
§ Recall	that	
importing	means	to	
bring	in	that	class	
into	your	own	file
§ Start clock
§ Call function
§ Stop clock

import time

def c_to_f(c):

return c*9.0/5 + 32 

t0 = time.clock()

c_to_f(100000)

t1 = time.clock() - t0

print("t =", t1, "s,")

6.0001	LECTURE	8 59



TIMING	PROGRAMS	IS	
INCONSISTENT
§ GOAL:	to	evaluate	different	algorithms
§ Running	time	varies	between	algorithms
§ Running	time	varies	between	implementations
§ Running	time	varies	between	computers
§ Running	time	is	not	predictable	for	small	inputs

§ Time	varies	for	different	inputs	but	
cannot	really	express	a	relationship	
between	inputs	and	time

6.0001	LECTURE	8 60



COUNTING	OPERATIONS
§ Assume	these	steps	take	
constant	time:
• Mathematical	operations
• Comparisons
• Assignments
• Accessing	objects	in	
memory

§ Count	number	of	
operations	executed	as	
function	of	size	of	input

def c_to_f(c):
return c*9.0/5 + 32 

def mysum(x):
total = 0
for i in range(x+1):

total += i
return total

6.0001	LECTURE	8 61

mysum à 1+3(x+1)	ops



COUNTING	OPERATIONS	IS	
BETTER,	BUT	…
§ GOAL:	to	evaluate	different	algorithms
§ Count	depends	on	algorithm
§ Count	depends	on	implementations
§ Count	independent	of	computers
§ No	real	definition	of	which	operations	to	count

§ Count	varies	for	different	inputs	and		
can	come	up	with	a	relationship	
between	inputs	and	the	count

6.0001	LECTURE	8 62



… STILL	NEED	A	BETTER	WAY
• Timing	and	counting	evaluate	implementations
• Timing	and	counting	evaluate	machines

•Want	to	evaluate	algorithm
•Want	to	evaluate	scalability
•Want	to	evaluate	in	terms	of	input	size

6.0001	LECTURE	8 63



A	BETTER	WAY
§ Focus	on	idea	of	counting	operations	in	an	algorithm,	but	
not	worry	about	small	variations	in	implementation

§ Focus	on	how	algorithm	performs	when	size	of	problem	
gets	arbitrarily	large

§Want	to	relate	time needed	to	complete	a	computation,	
measured	this	way,	against	the	size	of	the	input to	the	
problem

§ Need	to	decide	what	to	measure,	given	that	actual	
number	of	steps	may	depend	on	specifics	of	trial

6.0001	LECTURE	8 64



HOW	TO	CHOOSE	WHICH	INPUT	TO	
USE	TO	EVALUATE	A	FUNCTION
§Want	to	express	efficiency	in	terms	of	input,	so	need	
to	decide	what	is	your	input
§ Could	be	an	integer	
-- mysum(x)

§ Could	be	length	of	list	
-- list_sum(L)

§ You	decide	when	multiple	parameters	to	a	function
-- search_for_elmt(L, e)

6.0001	LECTURE	8 65



DIFFERENT	INPUTS	CHANGE	
HOW	THE	PROGRAM	RUNS
§ A	function	that	searches	for	an	element	in	a	list
def search_for_elmt(L, e):

for i in L:
if i == e:

return True
return False

§When	e is	first	element	in	the	list	à BEST	CASE
§When	e is	not	in	list	àWORST	CASE
§When	look	through	about	half	of	the	elements	in	
list	à AVERAGE	CASE
§Want	to	measure	this	behavior	in	a	general	way

6.0001	LECTURE	8 66



BEST,	AVERAGE,	WORST	CASES
§ Consider	that	you	are	given	a	list	L of	some	length	len(L)
§ Best	case:	minimum	running	time	over	all	possible	inputs	of	
a	given	size,	len(L)
• Constant	for	search_for_elmt
• First	element	 in	any	list

§ Average	case:	average	running	time	over	all	possible	inputs	
of	a	given	size,	len(L)
• Practical	measure

§Worst	case:	maximum	running	time	over	all	possible	inputs	
of	a	given	size,	len(L)
• Linear	in	length	of	list	for	search_for_elmt
• Must	search	entire	 list	and	not	find	it
• Focus	on	worst	case	in	this	class

6.0001	LECTURE	8 67



ORDERS	OF	GROWTH
§Want	to	evaluate	programs	when	input	is	very	big
§Want	to	express	the	growth	of	program’s	run	time
§Want	to	put	an	upper	bound	on	growth
§ Do	not	need	to	be	precise:	“order	of”	not	“exact”	growth
§We	will	look	at	largest	factors	in	run	time	(which	section	
of	the	program	will	take	the	longest	to	run?)

6.0001	LECTURE	8 68



MEASURING	ORDER	OF	
GROWTH:	BIG	O()	NOTATION
§ Big	Oh	notation	measures	an	upper	bound	on	the	
asymptotic	growth,	often	called	order	of	growth
§ Big	Oh	or	O()	is	used	to	describe	worst	case
• Worst	case	occurs	often	and	is	the	bottleneck	when	a	program	
runs
• Express	 rate	of	growth	of	program	relative	to	the	input
• Evaluate	algorithm	not	machine	or	implementation

• A	technicality
• When	we	say	that	the	complexity	 of	f	is	O(n),	we	mean	 that	its	
asymptotic	growth	is	not	worse	than	linear	 in	n.
• It	is	an	upper	bound,	 not	necessarily	 a	tight	bound
• In	practice,	we	are	usually	looking	 for	something	 close	to	a	
tight	bound

6.0001	LECTURE	8 69



EXACT	STEPS	vs	O()
def fact_iter(n):

"""assumes n an int >= 0"""
answer = 1
while n > 1:

answer *= n
n -= 1

return answer

§ Computes	factorial
§ Number	of	steps:	
§Worst	case	asymptotic	complexity:	
• Ignore	additive	constants
• Ignore	multiplicative	constants

6.0001	LECTURE	8 70



WHAT	DOES	O(N)	MEASURE?
§ Interested	in	describing	how	amount	of	time	needed	
grows	as	size	of	(input	to)	problem	grows

§ Given	an	expression	for	the	number	of	operations	
needed	to	compute	an	algorithm,	want	to	know	
asymptotic	behavior	as	size	of	problem	gets	large

§Will	focus	on	term	that	grows	most	rapidly

§ Ignore	multiplicative	constants,	since	want	to	know	
how	rapidly	time	required	increases	as	increase	size	of	
input

6.0001	LECTURE	8 71



SIMPLIFICATION	EXAMPLES
§ Drop	constants	and	multiplicative	factors
§ Focus	on	dominant	term

: n2 + 2n + 2

: n2 + 100000n + 31000 

: log(n) + n + 4

6.0001	LECTURE	8 72



ANALYZING	PROGRAMS	AND	
THEIR	COMPLEXITY
§ Combine complexity	classes
• Analyze	statements	inside	functions
• Apply	some	rules,	focus	on	dominant	term

Law	of	Addition	for	O():	
• Used	with	sequential statements
• O(f(n))	+	O(g(n))	is	O(	f(n)	+	g(n)	)
• For	example,	

for i in range(n):

print('a')

for j in range(n*n):

print('b')

is	O(n)	+	O(n*n)	=	O(n+n2)	=	O(n2)	because	of	dominant	term
6.0001	LECTURE	8 74



ANALYZING	PROGRAMS	AND	
THEIR	COMPLEXITY
§ Combine complexity	classes
• Analyze	statements	inside	functions
• Apply	some	rules,	focus	on	dominant	term

Law	of	Multiplication	for	O():	
• Used	with	nested statements/loops
• O(f(n))	*	O(g(n))	is	O(	f(n)	*	g(n)	)
• For	example,	

for i in range(n):

for j in range(n):

print 'a'

is	O(n)*O(n)	=	O(n*n)	=	O(n2)	because	the	outer	loop	goes	n	
times	and	the	inner	loop	goes	n	times	for	every	outer	loop	iter.

6.0001	LECTURE	8 75



COMPLEXITY	CLASSES
§ O(1) denotes	constant running	time
§ O(log	n) denotes	logarithmic running	time
§ O(n)	denotes	linear running	time
§ O(n	log	n) denotes	log-linear running	time
§ O(nc)	 denotes	polynomial running	time	(c	is	a	
constant)
§ O(cn)	denotes	exponential running	time	(c	is	a	
constant	being	raised	to	a	power	based	on	size	of	
input)

6.0001	LECTURE	8 76



COMPLEXITY	CLASSES	
ORDERED	LOW	TO	HIGH

O(1) :	 constant

O(log n) :	 logarithmic

O(n) :	 linear

O(n log n):	 log	linear

O(nc) :	 polynomial

O(cn) :	 exponential

6.0001	LECTURE	8 77



COMPLEXITY	GROWTH
CLASS N	= 10 N	=	100 N	=	1000 N	=	1000000

O(1) 1 1 1 1

O(log	n) 1 2 3 6

O(n) 10 100 1000 1000000

O(n	log	n) 10 200 3000 6000000

O(n2) 100 10000 1000000 1000000000000

O(2n) 1024 12676506
00228229
40149670
3205376

1071508607186267320948425
0490600018105614048117055
3360744375038837035105112
4936122493198378815695858
1275946729175531468251871
4528569231404359845775746
9857480393456777482423098
5421074605062371141877954
1821530464749835819412673
9876755916554394607706291
4571196477686542167660429
8316526243868372056680693
76

Good	Luck!!

6.0001	LECTURE	8 78



NEXT	TIME
§You	will	see	examples	of	each	of	these	complexity	
classes
§You	will	learn	how	to	recognize	algorithmic	patterns	
that	are	characteristic	of	each	class

6.0001	LECTURE	8 79


