PYTHON CLASSES
and INHERITANCE

(download slides and .py files from Stellar to follow along!)
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LAST TIME

= Abstract data types using classes

" Coordinateexample

" Fractionexample

TODAY

= Review classes

= More details on classes, class variables

" Inheritance and hierarchies of classes

" Introduction to algorithmic complexity
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ASSIGNMENT:
MOBY DICK
PG. 1- 200

Assigned Reading

= Today
* 8.2

°*9.1-9.2

“I don’t like to give a lot of homework over
the weekend, so just read every other word.”

= Next lecture |
. 9.3 “Using Python

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised 083117.pdf
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THE POWER OF OBJECT
ORIENTED PROGRAMMING

" Bundle together objects that share
e common attributes and

* procedures that operate on those attributes

= Use abstraction to make a distinction between how to
implement an object versus how to use an object

"= Build layers of object abstractions that inherit A
. behaviors from other classes of objects

_/

basic classes

(= Create our own classes of objects on top of Pyt 1on’sj

\_

Another instance of a virtuous cycle — just as defining procedures lets us create new
procedures and treat as if built-in, we can create classes and treat as if built in to Python
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IMPLEMENTING USING
HE CLASS vs THE CLASS

= Write code from two different perspectives

Implementing a new Using the new object
object type with a class type in code
* Define theclass * Createinstances of the
* Define data attributes object type
(WHAT IS the object) * Do operations with
* Define methods them

(HOW TO use the object)

Class captures common Instances have specific
propertiesand behaviors |values for attributes
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CLASS DEFINITION INSTANCE
OF AN OBJECT TYPE vs OF A CLASS

" Class name is the type " Instance is one specific object
class Coordinate(object) coord = Coordinate (1, 2)
" Class is defined generically | = Data attribute values vary
* Use se1f torefertosome between instances
instance while defining class ¢l = Coordinate (1,2)
(self.x — self.y)=**2 c2 = Coordinate (3,4)

* self IS a parameterto

methods in class definition * c1 and c2 have different data

attribute valuesci.x and c2.x
because they are different

objects

= Class defines data and
methods common across all | ® Instance has the structure of

instances the class
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WHY USE OOP AND
CLASSES OF OBJECTS?

* Model or simulate real life — systems of objects




WHY USE OOP AND
CLASSES OF OBJECTS?

* Model or simulate real life — systems of objects

* Group different objects of the same type; capture
common patterns of use




GROUPS OF OBJECTS HAVE
ATTRIBUTES (RECAP)

= Data attributes
* How can you represent your object with data?

* Whatitis
* for a coordinate: x and y values
* for an animal: age, name

= Procedural attributes (behavior/operations/methods)
* How can someone interact with the object?
 Whatit does
* for a coordinate: find distance between two points
* for an animal: make a sound




CREATING INSTANCES (Recap)

"Usually when creating an instance of an object type, we will
want to provide some initial values for the internal data. To
do this,definean init method:

class Coordinate(object): Method is another name for
a procedural attribute, or a
procedure that “belongs” to
this class

def 1init (self, x, y):

self.x = x

self.y =y
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CREATING INSTANCES (Recap)

"Usually when creating an instance of an object type, we will
want to provide some initial values for the internal data. To

do this,definean init method:

class Coordinate(object):
def init (self, x, y):
self.x = X

self.y =y

When calling a method of an
object, Python always passes
the instance as the first
argument. By convention, we
use self as the name of the
first argument of methods.

9/28/19
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CREATING INSTANCES (Recap)

"Usually when creating an instance of a type, we will want to
provide some initial values for the internal data. To do this,
definean  init method:

class Coordinate(object): When calling a method of an
object, Python always passes

def _ init (self, x, y): the instance as the first

self.x = X argument. By convention, we
use self as the name of the
self.y =y first argument of methods.

"The “.” operator accesses an attribute of an object, so
__init  definestwo attributes for new object: x and y.

9/28/19 12




CREATING INSTANCES (Recap)

"Usually when creating an instance of an object type, we will
want to provide some initial values for the internal data. To
do this,definean init method:

class Coordinate(object): When calling a method of an

def init (self, x, y): object, Python always passes
the instance as the first

argument. By convention, we
self.y =y use self as the name of the
first argument of methods.

self.x = x

"The “” operator accesses an attribute of an object, so
__init  definestwo attributes for new object: x and y.

When accessing an attribute of an instance, start by looking
within the class definition, then move up to the definition of a
superclass, eventually move to the global environment
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CREATING INSTANCES (Recap)

"Usually when creating an instance of an object type, we will
want to provide some initial values for the internal data. To
do this,definean init method:

class Coordinate(object): The expression
classname(values...)

creates a new object of type

self.x = x classname and then calls its

__init  method with the new

object and values... as the

arguments. When the method is

c = Coordinate finished executing, Python returns

the initialized object as the value.

= 0,0) —

origin = Coordinate( —

def init (self, x, y):

self.y =y

Note that don’t provide
argument for self, Python does
this automatically

print(c.x, origin.x)
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VISUALIZING THIS IDEA

Coordinate Coordinate.__init__ Procedure bod

¢ = Coordinate(3,4)
Calls
__init__ (sel 4)

This calls

self.x = x ‘

selfy =y \\ \m
So ¢ points to m

Each instance has its own data

origin =.C<.)ordi.nate(0, 0) attributes, both instances inherit
Then origin points to attributes of Coordinate class

9/28/19 16
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GETTER AND SETTER METHODS
(RECAP)

class Animal (object) :

def 1init (self, age):

.age = age
.name = None
def get age(self):
%ngs return .age
def get name (self):
return .name
def set age(self, newage):
é@gs .age = newage
° def set name(self, newname=""):
.name = newname
. def  str (self):
Q«O return "animal:"+str( .name)+":"+str( .age)

= Getters and setters should be used outside of class to
access data attributes
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AN INSTANCE and QO‘%“G%@‘?G

| Lo

DOT NOTATION (RECAP) *%¢

* |nstantiation creates an instance of an object

a = Animal (3)

= Dot notation can be used to access attributes (data
and methods) though it is better to use gettersand

setters to access data attributes d\<e°“\;0¢ed
R\ «
3’6—(\\0\) (GCO((\
a. . age 63\.6 &O"
Cec,S \0\)"
a.get age /() ,&&N&»
8‘\\06 ’(\.e(s -
2
% °
¢ x© o
% K@

S

3“6

6.0001 LECTURE 8 19




STUFF
THEY DON'T
E\’ANT YOu
T0 KNOW"

INFORMATION RHIDING

= Author of class definition may change data attribute
variable names

class Animal (object) :

q66§®;6 def init (self, age):
\$ﬁ66¥ﬂq66 self.years|= age
(e%ﬁwﬁe def get age (self):
3

return| self.years

= |[f you are accessing data attributes outside the class and
class definition changes, may get errors a0

. . o .
= Qutside of class, use getters and setters instead PN R\
(\\\‘ ° '\(\S" eS
use a.get age () NOT a.age MR AN g
e good style
* easy to maintain code G0 (e
.\(\5
* prevents bugs ot
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PYTHON NOT GREAT AT | [uf
INFORMATION HIDING

= Allows you to access data from outside class definition in
an instance

print (a.age)

10 KNOW"

= Allows you to write to data from outside class definition
to an instance

a.age = 'infinite'

= Allows you to create data attributes for an instance from
outside class definition

a.size = "tiny"

" |t's NOT GOOD STYLE to do any of these!




'DE FRULT INIE00-HOO! THE
TWO SWEETE SWORDS IN THE
ENGLISH LANGURGE.

= Default arguments for formal parameters are used if no
actual argumentis given

def set name (self,| newname="") :

self.name = newname

= Default argument used here
a = Animal (3)

a.set name () wwﬁ

print (a.get name ())

= Argument passed in is used here

a = Animal (3) W

a.set name ("fluffy") @Wﬁ

print (a.get name())
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HIERARCHIES

object

= Parent class
(superclass)

= Child class

Animal

/

™~

I

(subclass)

* Inherits all data and
behaviors of parent

Person

Cat

Rabbit

class
e Add more information
e Add more behaviors

° Override behavior

AN

Student

6.0001 LECTURE 8
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INHERITANCE::
PARENT CLASS

class Animal|(object) :

"
eC
def  Init ( , age) : » o
©
.age = age :
J 7 \\S\\(\. cv . W
- N N e AC A\
.name = None Sad&gba @ﬂﬁ'
def get age(self): \o° «@ﬁ&.QQ* A
retarn age ‘@Q\e &\0(\6\'6\65‘
. \ ) (\
el J°
def get name (self): 0?@&@%
A¢)
return .name
def set age( , nhewage) :
.age = newage
def set name( , newname="") :
.name = newname
def  str | )
return "animal:"+str( .name) +" :"+str (

6.0001 LECTURE 8
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Sl
INHERITANCE: S T

X
\ T \ CARN -\ g
SUBCLASS S
B\ el e\
e(\“ S )
'\‘\\\ c.e"'/3 \\
A\
class Cat|(Animal) : -
" \‘“,\6 def speak ( ) :
\\ A\ rint ("meow"
36600’{‘0(\6 & def ) | ( ;
WO et  str :
0\
sQe .((\,é\“: return "cat:"+str ( .name) +":"+str( .age)
e
e((.\des ((\e,‘x\Od
O“
Sx(/
~

= Add new functionality with speak ()
* Instance of type Cat can be called with new methods

* Instance of type Animal throws errorif called with Cat’s
new method

[ = 1init  isnotmissing, usesthe Animal version]
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’&\06
USING THE HIERARCHY .« .
.\(\\\6( ?&'&‘S\_ 6\“660
In [31]: jelly = Cat(l) ‘\‘0((\ e&\\od\/
In [32]: jelly.set name('JellyBelly') G
In [33]: print(jelly) ’&O/«\?’O
cat:JellyBelly:1 <N @6“
((\G‘ Coqe( e,&\\od
In [34]: print(@nimalﬂ_str_] jelly) N © o <«
animal:JellyBelly:1 \ G*Q\\%?&i«ﬁ\
\) \\
In [35]: blob = Animal(l) Ci(\c\e(\\\\
In [36]: print(blob) ot
animal:None:1 \‘3\066
\\3(\%6 o“a(\
In [37]: blob.set name() c;a“(f S0
In [38]: print(blob) a‘“«) oc®
animal::1 .\(\5\3
Animal is a class | . gets associated attribute In this case, __str_ method
for Animal
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INHERITANCE

class Cat(Animal):
def speak(self):
print("'meow”)

def  str (self):
"cat:"+str(self.name)+":"+str(self.age)

return

class Rabbit(Animal):
def speak(self):
print(“meep”)
def str_ (self):

return “rabbit:"+str(self.name)+":"+str(self.age)

Different subclasses of Animal can specialize methods and attributes (like
speak) while inheriting common methods and attributes (like age and name)
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USING THE HIERARCHY

In [31]: jelly = Cat(1l)
In [34]: blob = Animal(1)
In [38]: peter = Rabbit(5) 6“&0
In [39]: jelly.speak() &0
meow = (o
o «@ﬁ
In [40]: peter.speak() \ﬁﬁ@;, x°
meep 8% ™
o
‘('\QS ’1\3,@6:&
In [41]: blob.speak() o>

AttributeError: 'Animal’' object has no
attribute 'speak'

6.0001 LECTURE 8
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WHICH METHOD TO USE?

* Subclass can have methods with same name as
superclass or other subclass

* For an instance of a class, look for a method of that
name in current class definition

* If not found, look for method of that name up the
hierarchy (in parent, then grandparent, and so on)

* Use first method in the hierarchy that you found with
that method name

6.0001 LECTURE 8 30




class Person(Animal):

def

__init (self, name, age):

Animal. init (self, age)

self.set name (name)

self.friends = []

def

get friends(self):

return self.friends.copy()

def

add friend(self, fname):

if fname not in self.friends:

self.friends.append(fname)

def

speak(self):

print("hello")

def

age diff(self, other):

diff = self.age - other.age

print(abs(diff), "year difference")

_/

%Ver,,

def

str (self):

\/77@

return "person:'+str(self.name)+":"+str(self.aqge)

NS¢ 0@40
th

11;7 Qg

OOIS

Calling Animal constructor gets all attributes of superclass; rest of this
~_init  method just adds attributes specific to subclass or instance
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E e
[ WorwERaND 2

SN

USING THE HIERARCHY

In [42]: alice = Person(‘Alice’, 29)
In [43]: tarrant = Person(‘Tarrant’, 56)
In [44]: alice.speak() &@60 &@&‘
hello - V“? 5%° o 25>
&< O((\ ((\e (\Ce
\)C)GS .\(\5&3

In [45]: alice.age_diff(tarrant)@W
27 year difference

In [46]: Person.age diff(tarrant,alice)
27 year difference REa
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- n
import random 5. Eip
O/hl" f(_/nc .
. QA bb
. //7/7 do Ns
class Student (Person) : 3 @n} 0746
. \Y (9
def  1nit (self, name, age, major=None) : O{m J‘Rsbs )y
Person. init (self, name, age) WUS@S Pe ‘5’2‘1‘,./-6 e ey
self.major = major b/b ’So Yteg
S

def change major(self, major): Q%& Q%;
self.major = major neniy ~ S
def speak(self): Uy
r =|random.random ()
if r < 0.25:
print ("1 have homework™") fan
elif 0.25 <= r < 0.5: N 9’01;,{)
print ("1 need sleep") IO/Q 27 /77@%
elif 0.5 <= r < 0.75: © Sl
print ("i should eat™) =
else:

print ("1 am watching tv")
def str (self):

return "student:"+str(self.name)+":"+str(self.age)+":"+str(self.major)
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USING THE HIERARCHY

In [42]: alice = Person(‘Alice’, 45)

F A
{ B WorberlaD) 1

SN

In [47]: tarrant = Student(‘'Tarrant’, 18, ‘Course VI')

In [48]: print(tarrant) «@6 X

student:Tarrant:18:Course VI -
S O

O

In [49]: tarrant.speak() \ Waﬁp

1 have homework ¢¢5&§&

In [50]: tarrant.speak() e 20

i have homework 6@@ &

In [51]: tarrant.speak() .cﬁe(&ﬂ%?ﬂ@

. . \,\ S \oe‘“ 60((\

1 am watching tv @@Q(éa ¢ <&

In [52]: tarrant.speak() &$e®ﬁao

i should eat oe©

6.0001 LECTURE 8
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INSTANCE CLASS
VARIABLES  vs VARIABLES

= we have seen instance = introduce class variables
variables so far in code that belong to the class
= specific to an instance = defined inside class but

outside any class methods,

= created for each : e
outside init

instance, belongs to an

instance " shared among all
objects/instances of that
class

= used the generic variable
name self within the class
definition

self.variable_name

6.0001 LECTURE 8 35




RECALL An1mal CLASS

class Animal (object):

def _ init_ (self, age):
self.age = age
self.name = None

def get age(self):
return self.age

def get name(self):
return self.name

def set age(self, newage):
self.age = newage

def set name(self, newname=""):
self.name = newname

def str (self):

return "animal:"+str(self.name)+":"+str(self.age)
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CLASS VARIABLES AND THE
Rabbi1t SUBCLASS

= class variables and their values are shared between all
instances of a class

class Rabbit (Animal) : ‘gﬁﬁ
e
tag |= 1 Q"}(
-a‘o\e def init (self, age, parentl=None, parentZ2=None) :
S _ .
C\%S Animal. 1init (self, age) o€ (\%es \1
\O (,\\3 e
self.parentl = parentl NS o T € C
e self.parent?2 = parent? ,ac@ess %6666\\3‘(06\‘
A A0 X
\\a‘\a self.rid|=|Rabbit.tag ot (\Ces
2 & s
\(\5‘ Rabbit.tag += 1 ,‘0(3\

" £ ag used to give unique id to each new rabbit instance
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Rabbit GETTER METHODS

class Rabbit(Animal) :

tag = 1
def init (self, age, parentl=None, parent2=None) :
Animal. init (self, age) ,ﬁ@
— — <O

self.parentl = parentl
self.parent?2 = parent?2
self.rid = Rabbit.tag «@@9 .dﬁ%djﬁ

- RabblF.tag +—.1 «@'~¢§@
get rid(self): Kﬁe
return str(self.rid) Jzfi1ll (5) é§@
) def get_parentl (self): &yﬁ
) return |self .parentl «@ﬁ© g&ﬁvgg -
def get parent2 (self): %e“e( a\Q\Q‘\/)L\SO 2 @{//@q
_ return |self.parent?2 '&0( a?\e?"(ea ’a‘\dq .\/@a\/
def  str (self): R ano@(o(ow
return "rabbit:"+ self.get rid() @ﬁwa@QK
Return actual object, in this case a Rabbit \(\\(‘e
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EXAMPLE USAGE

In 35:
In 36:
In 37:

In 38:

rl = Rabbit(3)
r2 = Rabbit(1l)
r3 = Rabbit(10)

print("rl:", rl)

rl: rabbit:00001

In 39:

print("r2:", r2)

r2: rabbit:00002

In 40:
rl parentl: None

. YUIIIDON"'LHAUE E@E AFRAID

j” |.s\u y
g s Hﬁ!ﬁ e

£ 4 ”/.”} ,

| THE BLUE SNAKE IS l]gEMl NUW

print("rl parentl:", rl.get parentl())

6.0001 LECTURE 8
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VISUALIZING THE HIERARCHY

Animal:
__init__
get_ name
__str

Rabbit: Cal!ing Rabbit will crea.te
an instance and use this
__init__ procedure on it
(because that is the one
visible in Rabbit’s
environment)

tag: 1
__init__

6.00.01X LECTURE
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VISUALIZING THE HIERARCHY

Animal:
__init__
get na
__str

That code uses
Animal.__init__

which will in turn call this
procedure on the
instance

Rabbit:
tag: 1
__init__

6.00.01X LECTURE
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VISUALIZING THE HIERARCHY

And thus the instance of
Rabbit (because of the
first call, which inherits
from the class definition)
will have bindings set by
the inherited __init__
code

Animal:
__init__
get_name

Rabbit:
tag: 1
__init__

name None
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VISUALIZING THE HIERARCHY

The rest of the original _init__
code calls

self.rid = Rabbit.tag

which creates a binding in self (i.e.
the instance) to current value of tag
(in class)

Animal:
__init__
get_name

Rabbit:
tag: 1
__init__

6.00.01X LECTURE 44



VISUALIZING THE HIERARCHY

The rest of the original _init__
code calls

self.rid = Rabbit.tag

which creates a binding in self (i.e.
the instance) to current value of tag
(in class)

Animal:
__init__
get_name

And then calls
Rabbit.tag +=1

Rabbit:
tag: 2
__init__

6.00.01X LECTURE 45



VISUALIZING THE HIERARCHY

Thus calling Rabbit a second time to
create a second instance will

Animal;

__init__ execute the same sequence, but
get_name now tag is bound to 2
__str

Rabbit:
tag: 2
__init__

name None

6.00.01X LECTURE 46



VISUALIZING THE HIERARCHY

And this will create a new instance
with a unique id number

Animal:
__init__
get_name

Rabbit:
tag: 3
__init__

6.00.01X LECTURE 'y



WORKING WITH YOUR OWN
TYPES

def add  ( , Other):

# returning object of same type as this class

return |[Rabbit (0, , other)

F N ™~

recall Rabbit’s __1nit (self, age, parentl=None, parentZ2=None)

= Define + operator between two Rabbi t instances

* Definewhatsomethinglikethisdoes:r4 = r1 + r2
where r1 and r2 are Rabbitinstances

* r4disanewRabbitinstance withageO
 r4 has selr as one parentand other as the other parent
*In__init ,parentlandparent2areoftypeRabbit

6.0001 LECTURE 8 48




EXAMPLE USAGE

In [53]: peter = Rabbit(2)

In [54]: peter.set name( Peter')

In [55]: hopsy = Rabbit(3)

In [56]: hopsy.set name( 'Hopsy')

In [61l]: mopsy = peter + hopsy

In [62]: mopsy.set name( Mopsy')

In [63]: print(mopsy.get parentl())
rabbit:00007

In [64]: mopsy.get_parent](j{get_name(}
Out[64]: 'Peter’

Need these to get actual object |Then access instance’s data
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SPECIAL METHOD O [l

= Decide that two rabbits are equal if they have the same two
parents
def eqg | , other):

parents same |= .parentl.rid == other.parentl.rid \

and .parent2.rid == other.parentZ2.rid
parents opposite|= .parent2.rid == other.parentl.rid \

and .parentl.rid == other.parent2.rid

return parents same or parents opposite

" Compare ids of parents since ids are unique (due to class var)
" Note you can’t compare objects directly

* For example, can’t try self.parentl == other.parentl
* This callsthe eq method over and over until call it on None and

gives an AttributeError When it tries to do None.parent1

6.0001 LECTURE 8 10)




EXAMPLE USAGE

In [53]: peter Rabbit(2)

In [54]: peter.set name( Peter')

In [55]: hopsy = Rabbit(3)

In [56]: hopsy.set name( 'Hopsy')

In [57]: cotton = Rabbit(1l, peter, hopsy)
In [58]: cotton.set name('Cottontail')

In [61l]: mopsy = peter + hopsy

In [62]: mopsy.set name( 'Mopsy')

In [65]: print(mopsy == cotton)
True
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THE POWER OF OBJECT
ORIENTED PROGRAMMING

" Bundle together objects that share
e common attributes and

* procedures that operate on those attributes

= Use abstraction to make a distinction between how to
implement an object versus how to use an object

= Build layers of object abstractions that inherit
behaviors from other classes of objects

= Create our own classes of objects on top of Python’s
basic classes




| 1 FOOD GROUPS |

Ry o)

5 Minute Break Debuggingyourpset -

STUDENTS AFTER HEARING
*ymABOUTFROIECT. =
N O

ssssss
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PROGRAM
EFFICIENCY




WRITING EFFICIENT
PROGRAMS

= So far, we have emphasized correctness. It is the first thing

to worry about!
" But sometimesthatis not enough

" Problems can be very complex (as we shall see when we
get to optimizationin 6.0002)

= But data sets can be

tweets

very large: in 2014 |
G I d n Facebook processes 350GB ofdata / |
oogle serve &

30,000,000,000,000 100 hours of new video are upIoadedV
. on YouTube
pages covering

100'000’000 GB of data L)‘ Google processes more than 2 IMIIIION seach

queries
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EFFICIENCY IS IMPORTANT

= Separate time and space efficiency of a program

" Tradeoff between them: can use up a bit more
memory to store values for quicker lookup later

" Challenges in understanding efficiency
* A program can be implemented in many different ways

* You can solve a problem using only a handful of different
algorithms

= Want to separate choice of implementation from
choice of more abstract algorithm
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A tester has the heart
of a developer.....

FVALUATING PROGRAMS | ===

= Measure with a timer

= Count the operations

= Abstract notion of order of growth




TIMING A PROGRAM ;

= Use time module  import time

= Recall that
importing meansto def c_to_f(c):
bring in that class return c*9.0/5 + 32

into your own file

= Startclock —— t0 = time.clock()

= Call function —— ¢_to_£(100000)

= Stop clock __» t1 = time.clock() - tO

print("t :"’ tl, "S’")
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TIMING PROGRAMS S
INCONSISTENT

= GOAL: to evaluate different algorithms

= Running time varies between algorithms v
= Running time varies between implementations ¥

= Running time varies between computers ) 4

= Running time is not predictable for small inputs 3¢

= Time varies for differentinputs but
cannot really express a relationship
between inputs and time
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= Assume these steps take

constant time:

* Mathematical operations

* Comparisons
* Assignments

* Accessing objectsin
memory

= Count number of
operations executed as
function of size of input

def c to f(c):
return

c*9.0/5 + 32

def mysum(x) :

6.0001 LECTURE 8

total = 0

2 OQS

for |1 1n range (x+1l) :

total += 1

return total
"LO

mysum =2 1+3(x+1) ops

A o?

Q‘D

61




COUNTING OPERATIONS IS
BETTER, BUT ...

= GOAL: to evaluate different algorithms

= Count depends on algorithm v
=" Count depends on implementations X
= Count independent of computers v

X

= No real definition of which operations to count

v

= Countvaries for differentinputs and
can come up with a relationship
between inputs and the count




.. STILL NEED A BETTER WAY

* Timing and counting evaluate implementations

* Timing and counting evaluate machines

* Want to evaluate algorithm

* Want to evaluate scalability

* Want to evaluate in terms of input size




WHAT IF I'TOLD YOU

\
A BETTER WAY 'I'IIEIIE IS A BETTER WAY

= Focus on idea of counting operations in an algorithm, but
not worry about small variationsin implementation

" Focus on how algorithm performs when size of problem
gets arbitrarily large

= Want to relate time needed to complete a computation,
measured this way, against the size of the input to the
problem

= Need to decide what to measure, given that actual
number of steps may depend on specifics of trial
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OW TO CHOOSE WHICH INPUT TO
USE TO EVALUATE A FUNCTION

= Want to express efficiencyin terms of input, so need
to decide what is your input

" Could be an integer
--mysum (x)

" Could be length of list
--list sum(L)

" You decide when multiple parameters to a function
--search for elmt (L, e)
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DIFFERENT INPUTS CHANGE

HOW THE PROGRAM

RUNS

= A function that searches for an elementin a list

def search for elmt(L, e):
for 1 in L:
1f 1 == e:
return True
return False

= When e is first element in the list > BEST CASE
= When e is not in list 2> WORST CASE

* When look through about half of the elements in

list > AVERAGE CASE

= Want to measure this behavior in a general way




BEST, AVERAGE, WORST CASES

" Consider thatyou are given a list L. of some length 1en (L)

" Best case: minimum running time over all possible inputs of
a givensize, len (L)

* Constant for search for elmt

* First element in any list

" Average case: average runningtime over all possible inputs
of a given size, 1en (L)
* Practical measure

= Worst case: maximum running time over all possible inputs
of a given size, 1en (L)

* Linear in length of list for search for elmt
* Must search entire list and not find it
* Focus on worst case in this class
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ORDERS OF GROWTH

= Want to evaluate programs when input is very big

= Want to express the growth of program’s run time
= Want to put an upper bound on growth
* Do not need to be precise: “order of” not “exact” growth

= We will look at largest factorsin run time (which section
of the program will take the longest to run?)
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MEASURING ORDER OF
GROWTH: BIG O() NOTATION

" Big Oh notation measures an upper bound on the
asymptotic growth, often called order of growth

" Big Oh or O() is used to describe worst case

* Worst case occurs often and is the bottleneck when a program
runs

* Express rate of growth of program relative to the input
* Evaluate algorithm not machine or implementation

* A technicality

 When we say that the complexity of fis O(n), we mean that its
asymptotic growth is not worse than linear in n.

* It is an upper bound, not necessarily a tight bound

* In practice, we are usually looking for something close to a
tight bound
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EXACT STEPS vs O)

def fact iter (n):
"""assumes n an int >= Oo"""

answer = 1
while n > 1: “ﬁ
answer *= n 0~
n -= 1 «ﬂ;«ﬂ@
return answer ©
= Computes factorial
N\
X

= Number of steps: x1°

= Worst case asymptotic complexity: oY
* Ignore additive constants
* Ignore multiplicative constants

70
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WHAT DOES O(N) MEASURE?

" Interested in describing how amount of time needed
grows as size of (input to) problem grows

= Given an expression for the number of operations
needed to compute an algorithm, want to know
asymptotic behavior as size of problem gets large

= Will focus on term that grows most rapidly

= |lgnore multiplicative constants, since want to know
how rapidly time required increases as increase size of
input
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SIMPLIFICATION EXAMPLES

= Drop constants and multiplicative factors

" Focus on dominant term

: n? + 2n + 2
o) : n? + 100000n + 31000

om : log(n) + n + 4




ANALYZING PROGRAMS AND
THEIR COMPLEXITY

= Combine complexity classes
* Analyze statementsinside functions

* Apply somerules, focus on dominantterm

Law of Addition for O():
* Used with sequential statements
* O(f(n)) + O(g(n)) is O( f(n) + g(n) )
* Forexample,

for 1 1n range(n): OUﬂ

print('a')

for 7 1in range(n*n) :
2
print ('b"'") o(n*)

is O(n) + O(n*n) = O(n+n?) = O(n?) because of dominant term




ANALYZING PROGRAMS AND
THEIR COMPLEXITY

= Combine complexity classes
* Analyze statementsinside functions

* Apply somerules, focus on dominantterm

Law of Multiplication for O():
* Used with nested statements/loops

* O(f(n)) * O(g(n)) is O( f(n) * g(n) )

* Forexample,
for 1 in range (n) : o(n)
for 7 1in range(n): h o
for eac
print 'a' o(n) 1
is O(n)*0O(n) = O(n*n) = 0O(n?) because the outer loop goes n
times and theinner loop goes n times for every outer loop iter.
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COMPLEXITY CLASSES

" O(1) denotes constant running time

* O(log n) denotes logarithmic running time
" O(n) denotes linear running time
" O(n log n) denotes log-linear running time

" O(n°) denotes polynomial running time (cis a
constant)

" O(c") denotes exponential running time (c is a
constant being raised to a power based on size of
input)
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COMPLEXITY CLASSES
ORDERED LOW TO HIGH

O (1) : constant — |

O(log n) I <— logarithmic
T

O (n) : linear — l/

E ; ;

O(n log n): I — loglinear

A
) O (n°) ; polynomial— |
C‘\S &a(\‘
o

O (c™) ; 4 <— exponential




COMPLEXITY GROWTH

0O(1)

O(log n) 1 2 3 6

O(n) 10 100 1000 1000000

O(n log n) 10 200 3000 6000000

O(n?) 100 10000 1000000 1000000000000
0(2") 1024 12676506  1071°08007186267320948425  Goad | yck!!

0490600018105614048117055

00228229  3360744375038837035105112
4936122493198378815695858

40149670  1575946729175531468251871

3205376 4528569231404359845775746
9857480393456777482423098
5421074605062371141877954
1821530464749835819412673
9876755916554394607706291
4571196477686542167660429
8316526243868372056680693
76
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NEXT TIME

=*You will see examples of each of these complexity
classes

=You will learn how to recognize algorithmic patterns
that are characteristic of each class
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