OBJECT ORIENTED
PROGRAMMING

(download slides and .py files to follow along!)

AAAAAAA

OBJECTS

= Python supports many different kinds of data

1234 3.14159 "Hello" (1, 5, 7, 11, 13]
{"CA": "California", "MA": "Massachusetts"}
= Each is an object, and every object has:

* Aninternal data representation (primitive or composite)
* A set of procedures for interaction with the object

= An object is an instance of a type
e 1234 isaninstance of an int

e "hello" isaninstance of a string

6.0001 LECTURE 8 p

OBJECT ORIENTED
PROGRAMMING (OOP)

* EVERYTHING IN PYTHON IS AN OBIJECT (and has a type)

= Can create new objects of some type
= Can manipulate objects

= Can destroy objects
* Explicitly using del or just “forget” about them

* Python system will reclaim destroyed or inaccessible
objects — called “garbage collection”

WHAT ARE OBJECTS?

" Objects are a data abstraction _z>—_ _
that captures... E

(1) An internal representation
* Through data attributes

(2) An interface for
interacting with object

* Through methods
(aka procedures/functions)

* Defines behaviors but
hides implementation

6.0001 LECTURE 8

-XAMPLE:
1,2,3,4] has type list

" How are lists represented internally? linked list of cells

1. = EER— R EREE - RN

" How to manipulate lists?
e L[1i], L[i:3]1, +
* len(), min(), max (), del (L[1])
* L.append(),L.extend(),L.count(),L.index (),

L.insert(),L.pop(),L.remove(),L.reverse(), L.sort()

" Internal representation should be private

= Correct behavior may be compromised if you manipulate
internal representation directly

6.0001 LECTURE 8 5

ADVANTAGES OF OOP

= Bundle data into packages together with procedures
that work on them through well-defined interfaces

= Divide-and-conquer development
* Implement and test behavior of each class separately
* Increased modularity reduces complexity

= Classes make it easy to reuse code
* Many Python modules define new classes

* Each class has a separate environment (no collision on
function names)

* Inheritance allows subclasses to redefine or extend a
selected subset of a superclass’ behavior

6.0001 LECTURE 8 6

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

= Make a distinction between creating a class and
using an instance of the class

= Creating the class involves
* Defining the class name

* Defining class attributes
* for example, someone wrote code to implement a list class

= Using the class involves
* Creating new instances of the class

* Doing operations on the instances
* forexample, L=[1,2] and 1en (L)

6.0001 LECTURE 8 7

Implementing the class

DEFINE YOUR OWN TYPES

" Use the class keyword to define a new type

S . c
0\3‘9‘{\(\.\‘\0“ ((\e\&\\" R
e

class||Coordinate|(jobject) :

#define attributes here

= Similar to de £, indent code to indicate which statements are
part of the class definition

" The word object means that Coordinate is a Python
object and inherits all its attributes (inheritance next lecture)

* Coordinate is asubclass of object
* object isasuperclass of Coordinate

6.0001 LECTURE 8 9

WHAT ARE ATTRIBUTES?

= Data and procedures that “belong” to the class

= Data attributes
* Think of data as other objects that make up the class

* for example, a coordinate is made up of two numbers

* Methods (procedural attributes)
* Think of methods as functions that only work with this class
* How to interact with the object

* for example you can define a distance between two
coordinate objects but there is no meaning to a distance
between two list objects

6.0001 LECTURE 8

DEFINING HOW TO CREATE AN
NSTANCE OF A CLASS

= First have to define how to create an instance of
class

" Use a special method called init to
initialize some data attributes or perform

initialization operations R
.\(\.\‘\ 0\0'\8
class Coordinate (obiject) : AP xe
(ob]) /\N\\a’&ﬁd‘*/{\a

def init (self],| x, vy)l: cC© R

6.0001 LECTURE 8

ACTUALLY CREATING

AN INSTANCE OF A CLASS

ot
N0\3\‘3"
c =| Coordinate (3, 4) A o
. : e\s ?
origin = Coordinate (0, 0) C‘i‘\\pe&ﬂa‘/@m
Nt OOA{/ ,53(\6
print (c.x) 60“0 RS ¢ WO B
. . \ O S
print (origin.x) \)se‘\(\e 303‘“0 Q‘\\e ~
S
A
O

= Data attributes of an instance are called instance
variables

=" Don’t provide argument for sel f, Python does this
automatically

WHAT IS AMETHOD?

" Procedural attribute, like a function that works only
with this class

= Python always passes the object as the first argument

 Convention is to use self as the name of the first
argument of all methods

=" The “.” operator is used to access any attribute
* A data attribute of an object

* A method of an object

6.0001 LECTURE 8

DEFINE AMETHOD

FOR THE Coordinate CLASS

class Coordinate (object) :
def 1nit (self, x, y): gﬂ“\
self.x = x e\©

self.y =y o°

def distance (jself|, |other) : Jo*

x diff sqg = (self|.xrother.x)**2

y diff sgq = (self.y-other.y)**2
return (x diff sq + y diff sqg)**0.5

= Other than self and dot notation, methods behave

just like functions (take params, do operations, return)

6.0001 LECTURE 8 16

Using the class

HOW TO USE A METHOD

def distance (self, other): 6&§

code from prev slide here «@ﬂp
Using the class:
= Conventional way " Equivalent to
c = Coordinate (3,4) c = Coordinate (3, 4)
zero = Coordinate (0, 0) zero = Coordinate (0, 0)
print (- distance|(zero))) print (Coordinatel)distance|(c, zero))

6.0001 LECTURE 8

EXAMPLE: FRACTIONS

= Create a new type to represent a number as a fraction

= Internal representation is two integers
* Numerator

e Denominator

= Interface a.k.a. methods a.k.a how to interact with
Fraction objects

* Add, subtract
* Invert the fraction

" Let’s write it together!

6.0001 LECTURE 8

PRINT REPRESENTATION OF
AN OBJECT

>>> ¢ = Coordinate(3,4)
>>> print (c)
< _ main_ .Coordilinate object at 0x7fa918510488>

= Uninformative print representation by default

= Definea str method for aclass

" Python callsthe str = method when used with
print on your class object

= You choose what it does! Say that when we print a
Coordinate object, want to show

>>> print (c)
<3,4>

6.0001 LECTURE 8

Implementing the class

DEFINING YOUR OWN PRINT
METHOD

class Coordinate (object) :

def init (self, x, Vv):

self.x = x
self.y =y
def distance(self, other):
x diff sg = (self.x-other.x)**2
y diff sgq = (self.y-other.y)**2

return (x diff sgq + y diff sq)**0.5
def str (self) :

return|"<"+str(self.x)+","+str (self.y)+">"

6.0001 LECTURE 8

WRAPP
AROUN

Using the class

NG YOUR F

EAD

D TYPES AN

D CLASSES

= Can ask for the type of an object instance &8~
>>> ¢ = Coordinate (3,4) 0&&\\6/
>>> print (c) (X ((\06 &C’\s")
<3, 4> e (O
>>> print (type (c)) oo (5\0’6‘6
<class _main__.Coordinate> | %° __co°
. . e \6% oS
= This makes sense since 62" Lok ©
>>> print (Coordinate) 0(6\(‘3 \ a‘\\Q
<class main .Coordinate> 2 C° eg\’é"c’
>>> print (type (Coordinate)) 0(5\06‘
<type 'type'> 2C°
" Use isinstance () tocheckifan objectisa Coordinate
>>> print (isinstance (c, Coordinate))

True

6.0001 LECTURE 8

SPECIAL OPERATORS

"+, -, =5, <, >, len(), print, and many others

https://docs.python.org/3/reference/datamodel.html#tbasic-customization

" Like print, can override these to work with your class

= Define them with double underscores before/after

~_add (self, other) > self + other
__sub (self, other) - self - other
eq (self, other) - self == other
1t (self, other) - self < other
__len (self) - len(self)
str (self) - print self

... and others

6.0001 LECTURE 8

https://docs.python.org/3/reference/datamodel.html#basic-customization

EXAMPLE: FRACTIONS

= Create a new type to represent a number as a fraction

= Internal representation is two integers
* Numerator

e Denominator

= Interface a.k.a. methods a.k.a how to interact with
Fraction objects

* Add, sub, mult, div to work with +, -, *, /
* Print representation, convert to a float
* |Invert the fraction

" Let’s write it together!

6.0001 LECTURE 8

THE POWER OF OOP

= Bundle together objects that share
e Common attributes and

* Procedures that operate on those attributes

= Use abstraction to make a distinction between how to
implement an object vs how to use the object

= Build layers of object abstractions that inherit
behaviors from other classes of objects

= Create our own classes of objects on top of Python’s
basic classes

6.0001 LECTURE 8

5 Min Break, then Quiz Time!

= Sit at a seat, not on the floor

= No aids allowed, only MITx and your IDE

" If you finish early, stay in your seat (no phones,
external websites, etc)

" Checkout password given in the last 2 mins of
exam

Exam link:

bit.ly/60001-mq2-f19

	OBJECT ORIENTED PROGRAMMING�(download slides and .py files to follow along!)
	OBJECTS
	OBJECT ORIENTED PROGRAMMING (OOP)
	WHAT ARE OBJECTS?
	EXAMPLE: �[1,2,3,4] has type list
	ADVANTAGES OF OOP
	Slide Number 7
	DEFINE YOUR OWN TYPES
	WHAT ARE ATTRIBUTES?
	DEFINING HOW TO CREATE AN INSTANCE OF A CLASS
	ACTUALLY CREATING �AN INSTANCE OF A CLASS
	WHAT IS A METHOD?
	DEFINE A METHOD �FOR THE Coordinate CLASS
	HOW TO USE A METHOD
	EXAMPLE: FRACTIONS
	PRINT REPRESENTATION OF AN OBJECT
	DEFINING YOUR OWN PRINT METHOD
	WRAPPING YOUR HEAD AROUND TYPES AND CLASSES
	SPECIAL OPERATORS
	EXAMPLE: FRACTIONS
	THE POWER OF OOP
	5 Min Break, then Quiz Time!

