
OBJECT ORIENTED
PROGRAMMING
(download slides and .py files to follow along!)
6.0001 LECTURE 7

ANA BELL

6.0001 LECTURE 8 1

OBJECTS
 Python supports many different kinds of data
1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

 Each is an object, and every object has:
• An internal data representation (primitive or composite)
• A set of procedures for interaction with the object

 An object is an instance of a type
• 1234 is an instance of an int
• "hello" is an instance of a string

6.0001 LECTURE 8 2

OBJECT ORIENTED
PROGRAMMING (OOP)
 EVERYTHING IN PYTHON IS AN OBJECT (and has a type)

 Can create new objects of some type

 Can manipulate objects

 Can destroy objects
• Explicitly using del or just “forget” about them
• Python system will reclaim destroyed or inaccessible

objects – called “garbage collection”

6.0001 LECTURE 8 3

WHAT ARE OBJECTS?
 Objects are a data abstraction

that captures…

(1) An internal representation
• Through data attributes

(2) An interface for
interacting with object

• Through methods
(aka procedures/functions)

• Defines behaviors but
hides implementation

6.0001 LECTURE 8 4

 How are lists represented internally? linked list of cells

L =

 How to manipulate lists?
• L[i], L[i:j], +

• len(), min(), max(), del(L[i])

• L.append(),L.extend(),L.count(),L.index(),

L.insert(),L.pop(),L.remove(),L.reverse(), L.sort()

 Internal representation should be private

 Correct behavior may be compromised if you manipulate
internal representation directly

EXAMPLE:
[1,2,3,4] has type list

6.0001 LECTURE 8 5

1 -> 2 -> 3 -> 4 ->

ADVANTAGES OF OOP
 Bundle data into packages together with procedures
that work on them through well-defined interfaces
 Divide-and-conquer development

• Implement and test behavior of each class separately
• Increased modularity reduces complexity

 Classes make it easy to reuse code
• Many Python modules define new classes
• Each class has a separate environment (no collision on

function names)
• Inheritance allows subclasses to redefine or extend a

selected subset of a superclass’ behavior

6.0001 LECTURE 8 6

Make a distinction between creating a class and
using an instance of the class

 Creating the class involves
• Defining the class name
• Defining class attributes
• for example, someone wrote code to implement a list class

 Using the class involves
• Creating new instances of the class
• Doing operations on the instances
• for example, L=[1,2] and len(L)

6.0001 LECTURE 8 7

Implementing the class Using the class

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

DEFINE YOUR OWN TYPES
 Use the class keyword to define a new type

class Coordinate(object):

#define attributes here

 Similar to def, indent code to indicate which statements are
part of the class definition

 The word object means that Coordinate is a Python
object and inherits all its attributes (inheritance next lecture)
• Coordinate is a subclass of object
• object is a superclass of Coordinate

6.0001 LECTURE 8 9

Implementing the class Using the class

WHAT ARE ATTRIBUTES?
 Data and procedures that “belong” to the class

 Data attributes
• Think of data as other objects that make up the class
• for example, a coordinate is made up of two numbers

Methods (procedural attributes)
• Think of methods as functions that only work with this class
• How to interact with the object
• for example you can define a distance between two

coordinate objects but there is no meaning to a distance
between two list objects

6.0001 LECTURE 8 10

DEFINING HOW TO CREATE AN
INSTANCE OF A CLASS
 First have to define how to create an instance of
class
 Use a special method called __init__ to
initialize some data attributes or perform
initialization operations
class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

6.0001 LECTURE 8 11

Implementing the class Using the class

ACTUALLY CREATING
AN INSTANCE OF A CLASS

c = Coordinate(3,4)

origin = Coordinate(0,0)

print(c.x)

print(origin.x)

 Data attributes of an instance are called instance
variables
 Don’t provide argument for self, Python does this
automatically

6.0001 LECTURE 8 13

Implementing the class Using the class

WHAT IS A METHOD?
 Procedural attribute, like a function that works only
with this class

 Python always passes the object as the first argument
• Convention is to use self as the name of the first

argument of all methods

 The “.” operator is used to access any attribute
• A data attribute of an object
• A method of an object

6.0001 LECTURE 8 14

DEFINE A METHOD
FOR THE Coordinate CLASS

class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

 Other than self and dot notation, methods behave
just like functions (take params, do operations, return)

6.0001 LECTURE 8 16

Implementing the class Using the class

HOW TO USE A METHOD
def distance(self, other):

code from prev slide here

Using the class:
 Conventional way
c = Coordinate(3,4)

zero = Coordinate(0,0)

print(c.distance(zero))

6.0001 LECTURE 8 18

 Equivalent to
c = Coordinate(3,4)

zero = Coordinate(0,0)

print(Coordinate.distance(c, zero))

Implementing the class Using the class

EXAMPLE: FRACTIONS
 Create a new type to represent a number as a fraction

 Internal representation is two integers
• Numerator
• Denominator

 Interface a.k.a. methods a.k.a how to interact with
Fraction objects
• Add, subtract
• Invert the fraction

 Let’s write it together!

6.0001 LECTURE 8 19

PRINT REPRESENTATION OF
AN OBJECT
>>> c = Coordinate(3,4)
>>> print(c)
<__main__.Coordinate object at 0x7fa918510488>

 Uninformative print representation by default

 Define a __str__ method for a class

 Python calls the __str__ method when used with
print on your class object

 You choose what it does! Say that when we print a
Coordinate object, want to show
>>> print(c)
<3,4>

6.0001 LECTURE 8 20

DEFINING YOUR OWN PRINT
METHOD
class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

def __str__(self):

return "<"+str(self.x)+","+str(self.y)+">"

6.0001 LECTURE 8 21

Implementing the class Using the class

WRAPPING YOUR HEAD
AROUND TYPES AND CLASSES
 Can ask for the type of an object instance

>>> c = Coordinate(3,4)
>>> print(c)
<3,4>
>>> print(type(c))
<class __main__.Coordinate>

 This makes sense since
>>> print(Coordinate)
<class __main__.Coordinate>
>>> print(type(Coordinate))
<type 'type'>

 Use isinstance() to check if an object is a Coordinate
>>> print(isinstance(c, Coordinate))
True

6.0001 LECTURE 8 22

Implementing the class Using the class

SPECIAL OPERATORS
 +, -, ==, <, >, len(), print, and many others
https://docs.python.org/3/reference/datamodel.html#basic-customization

 Like print, can override these to work with your class

 Define them with double underscores before/after
__add__(self, other)  self + other
__sub__(self, other)  self - other
__eq__(self, other)  self == other
__lt__(self, other)  self < other
__len__(self)  len(self)
__str__(self)  print self
... and others

6.0001 LECTURE 8 24

https://docs.python.org/3/reference/datamodel.html#basic-customization

EXAMPLE: FRACTIONS
 Create a new type to represent a number as a fraction

 Internal representation is two integers
• Numerator
• Denominator

 Interface a.k.a. methods a.k.a how to interact with
Fraction objects
• Add, sub, mult, div to work with +, -, *, /
• Print representation, convert to a float
• Invert the fraction

 Let’s write it together!

6.0001 LECTURE 8 25

THE POWER OF OOP
 Bundle together objects that share

• Common attributes and
• Procedures that operate on those attributes

 Use abstraction to make a distinction between how to
implement an object vs how to use the object

 Build layers of object abstractions that inherit
behaviors from other classes of objects

 Create our own classes of objects on top of Python’s
basic classes

6.0001 LECTURE 8 26

5 Min Break, then Quiz Time!
 Sit at a seat, not on the floor

 No aids allowed, only MITx and your IDE

 If you finish early, stay in your seat (no phones,
external websites, etc)
 Checkout password given in the last 2 mins of
exam

6.0001 LECTURE 1 27

Exam link:

bit.ly/60001-mq2-f19

	OBJECT ORIENTED PROGRAMMING�(download slides and .py files to follow along!)
	OBJECTS
	OBJECT ORIENTED PROGRAMMING (OOP)
	WHAT ARE OBJECTS?
	EXAMPLE: �[1,2,3,4] has type list
	ADVANTAGES OF OOP
	Slide Number 7
	DEFINE YOUR OWN TYPES
	WHAT ARE ATTRIBUTES?
	DEFINING HOW TO CREATE AN INSTANCE OF A CLASS
	ACTUALLY CREATING �AN INSTANCE OF A CLASS
	WHAT IS A METHOD?
	DEFINE A METHOD �FOR THE Coordinate CLASS
	HOW TO USE A METHOD
	EXAMPLE: FRACTIONS
	PRINT REPRESENTATION OF AN OBJECT
	DEFINING YOUR OWN PRINT METHOD
	WRAPPING YOUR HEAD AROUND TYPES AND CLASSES
	SPECIAL OPERATORS
	EXAMPLE: FRACTIONS
	THE POWER OF OOP
	5 Min Break, then Quiz Time!

