W—

Lecture 6: Monte Carlo
Simulation

(download slides and .py files from Stellar to follow along)

John Guttag

MIT Department of Electrical Engineering and
Computer Science

Relevant Reading

=Today
o Chapter 16

¢ Introduction to

=Next week ~ ;
o Sections 15.3-15.4 g:%srit::;xming

“Using Python

With Application to Understanding Data

/ X :/ : g

'.‘/' >

second edition
John \7téag

6.0002 LECTURE 6 2

A Little History

= Stanislaw Ulam, recovering 5
from an illness, was playing a &
lot of solitaire

" Tried to figure out probability
of winning, and failed

" Thought about playing lots of
hands and counting number of
wins

> ~10,000 hands needed
= Asked Von Neumann if he

could build a program to
simulate many hands on ENIAC

R =

MOV T gk + ‘
TR sy 34 | ‘v
6.0002 LECTURE 6 ——— a7

Bill's Solitaire Tester
Probabilities and Odds relating to The Game of (Klondike) Solitaire P

Back to results

Results for one hundred million games of Draw 3, 3 times around

rTE——

Cards to draw Games 1 00’000, 000

1 @ 3 &1 @3 =4 yed

Completely JRFZFEF
B727%, 1in 11.459

Lots Sequential

7 &

-55,200.000,000
ULOE 55.138.811.400
=8 -561.183.6

Random Mumber Algorithm
Intrinsic VMisual Basic Rnd() function

@ Mersenne Twister
R e e Blapsed ti 5 hours 13 minute
Default Seque | | Randomize | Hem::mg T:E: usl.jl:lr:nds minLtes
The Pla EUEENE] 5311.81 games:
=3 =0
* Instantaneous rate [FRS ST T
Warp Speed | Res T S4g5E7
WOVEER 0.2%, 1in 4023
4048596
No Aces appear TR TaP Tl

Al red or all black JEEOEE

(=N
o

Mo move on the

=
o
o
en

0.0 secs

Animation [}

Speed Slow

EOUENCY

Fr

Gme= 100000000

to play

| Go |I Pause | Stop | — - ! 1r\.

ards to th

Who Was Stanislaw Ulam?

=Polish-American mathematician, many significant
contributions to mathematics and physics

=sUlam’s (Collatz) conjecture: (n
) = 12 if neven
\3 *n+1 ifnodd

vn > 03ifin)=1

Knowing what is big and what is
small is more important than being <
able to solve partial differential e(\ 9

equations.

— Stanislaws (flam —

AZ QUOTES

6.0002 LECTURE 6 5

Attempt to Disprove Conjecture

def UlamConjecture(n, toPrint = False):
"iiassumes n a positive int"""
result = [n]
while n != 1:

if n%2 == 0:
n=n//2
else:
n=3xn + 1
if toPrint:
result.append(n)
if toPrint:

#print('Sequence leading to 1:', result)
print('Length and maximum value of sequence ="',
len(result), max(result))

import sys
for i in range(100000):
UlamConjecture(random.randint(1, sys.maxsize))
print('Holds for', i+l1, 'randomly chosen ints between 1 and',
sys.maxsize)

6.0002 LECTURE 6 6

Monte Carlo Simulation

*A method of estimating the value of an unknown
guantity using the principles of inferential statistics

"|nferential statistics
o Population: a set of examples
o Sample: a proper subset of a population

o Key fact: a random sample tends to exhibit the same
properties as the population from which it is drawn

sExactly what we did with random walks

6.0002 LECTURE 6 7

An Example

=Given a single coin, estimate fraction of heads you
would get if you flipped the coin an infinite number of
times

=Consider one flip

How confident would you
be about answering 1.07?

6.0002 LECTURE 6 8

Flipping a Coin Twice

Do you think that the next flip will come up heads?

6.0002 LECTURE 6 9

ping a Coin 100 Times

Now do you
think that the
next flip will
come up heads?

LECTURE 6

Flipping a Coin 100 Times

Do you think
that the
probability of
the next flip
coming up
heads is 52/1007?

Given the data,

it’s your best
estimate

But confidence
should be low

6.0002 LECTURE 6 11

Why the Difference in Confidence?

=Confidence in our estimate depends upon two things
=Size of sample (e.g., 100 versus 2)
=\/ariance of sample (e.g., all heads versus 52 heads)

=As the variance grows, we need larger samples to have
the same degree of confidence

6.0002 LECTURE 6 12

Roulette

No need to
simulate, since
answers obvious

Allows us to
compare
simulation results
to actual
probabilities

6.0002 LECTURE 6 13

Class Definition

class FairRoulette():
def __init_ (self):

def

def

def

self.pockets = []

for i in range(1,37):
self.pockets.append(i)

self.ball = None

self.pocketOdds = len(self.pockets) - 1

spin(self):

self.ball = random.choice(self.pockets)

betPocket(self, pocket, amt):

if str(pocket) == str(self.ball):
return amtkxself.pocketOdds

else: return - amt

_str__(self):

return 'Fair Roulette'’

6.0002 LECTURE 6 14

Monte Carlo Simulation

def playRoulette(game, numSpins, pocket, bet, toPrint):
totPocket = 0
for i in range(numSpins):
game.spin()
totPocket += game.betPocket(pocket, bet)
if toPrint:
print(numSpins, 'spins of', game)
print('Expected return betting', pocket, '=',\
str(100xtotPocket/numSpins) + '%\n')
return (totPocket/numSpins)

game = FairRoulette()
for numSpins in (100, 1000000):
for i in range(3):
playRoulette(game, numSpins, 2, 1, True)

6.0002 LECTURE 6 15

100 and 1M Spins of the Wheel

100 spins of Fair Roulette

Expected

return betting 2 = -100.0%

100 spins of Fair Roulette

Expected

return betting 2 = 44.0%

100 spins of Fair Roulette

Expected

10000000
Expected

10000000
Expected

10000000
Expected

return betting 2 = -28.0%

spins of Fair Roulette
return betting 2 = 0.24596%

spins of Fair Roulette
return betting 2 = -0.11548%

spins of Fair Roulette
return betting 2 = -0.01756%

6.0002 LECTURE 6

16

Law of Large Numbers

" In repeated independent tests with the same actual
probability p of a particular outcome in each test, the
chance that the fraction of times that outcome occurs
differs from p converges to zero as the number of trials

goes to infinity

Does this imply that if
deviations from expected
behavior occur, these
deviations are likely to be

evened out by opposite
deviations in the future?

6.0002 LECTURE 6 17

Gambler’s Fallacy

=“On August 18, 1913, at the casino in Monte Carlo,

black came up a record twenty-six times in succession
[in roulette]. ... [There] was a near-panicky rush to bet
on red, beginning about the time black had come up a

phenomenal fifteen times.” -- Huff and Geis, How to
Take a Chance

=Probability of 26 consecutive reds
: 1/67,108,865

=Probability of 26 consecutive reds when previous 25
rolls were red

. 1/2

6.0002 LECTURE 6 18

Regression to the Mean

TABLE L

NruBeR OF ADULT CHILDREY OF TARIOUS STATCRES BORN OF 205 MID-PARENTS OF VARIOUS STATURES.
(All Female heights have been multiplied by 1:0%).

I«

Heights of | Heights of the Adult Children. Total Number of
the Mid- Medi
pn.rerlx:s in [6 I . I : | : ! | e A edians.
inches. 9.0100.0 '24.9 laz.0 an.olam.y lna. .9 len.g '21.0 'ea.0 =q. dult id- .
Below | 22632 ;642 652 66°2 (67 glss 2!692 702 71-2 ..,2|;32 Above (iidren. | parents. s
b1 g | £ e -3
RN S (e g R R S W0 e R s 1 A 4 5 . RS
725 eojeefee foe fae fun e] 1] 2] 1i 2 7, 2 4 19 6 722 g
715 eo deefestee | 1) 8 4,81 5/10; 4] 9} 2 2 43 11 699 &
L TONORE SR SNCE OE YN 2 ¢ ARG SETSE SRTEE SR 3 68 22 695 S
605 ! 1:16| 4177|2720 33|25 2011, 4 5 183 41 639 2.
655 Y LTI IR e 8 . 219 49 652 .
673 | .. ! 8| 5 14|15136|35 23 83|19 11! ¢!, v 211 33 676 =
665 .. [B L8 BEREI I I L ¥ i fon it . 78 20 672 &
635 ! 1 w9l TN 7,7 8. 8] 1. . 65 2 667 =
645 | 1 l R oy GE BB it Bl e | ot bl 23 5 658 g
Below .. 3} l.oL94p | 2] 2 S i TR -5 14 1 ve 3
| — | —— I —_— PR !
Totals .. 5 | 7|32 59|4Si117 135 120 167 | 99 64| 41 17! 14 028 | 205 ..
Medians A i-cse-s 67-8 167°9 I67-7 67-9 683 69'5 169°0 l159-oi:0-0| & o . .
. ! v i !

Note.—In caleulating the Medians, the entries have been taken as referring to the middle of the squares in which they
stand. The reason why the headings run 622, €32, &c., instead of 62'5, 63'5, &e., is that the observations ure unequally
distributed between 62 and €3, 63 and 64, &c., there being a strong Lias in favour of integral inches. After careful consideration,
I concluded that the headings, as adopted, best satisfied the conditions. This inequulity was not apparent in the case of the
Mid-parents.

Francis Galton, 1885

Regression to the Mean

" Following an extreme random event, the next random
event is likely to be less extreme

= If you spin a fair roulette wheel 10 times and get 100%
reds, that is an extreme event (probability = 1/1024)

= |t is likely that in the next 10 spins, you will get fewer
than 10 reds

o But the expected number is not less than 5!

= So, if you look at the average of the 20 spins, it will be
closer to the expected mean of 50% reds than to the
100% of the first 10 spins

6.0002 LECTURE 6 20

Two Subclasses of Roulette

class EuRoulette(FairRoulette):
def __init__ (self):
FairRoulette. init (self)
self.pockets.append('0")
def __str_ (self):
return 'European Roulette’

class AmRoulette(EuRoulette):
def __init__ (self):
EuRoulette. init (self)
self.pockets.append('00")
def __str_ (self):
return 'American Roulette’

6.0002 LECTURE 6 21

Comparing the Games

def simGamel(spinList):
def findPocketReturn(game, numTrials, trialSize, toPrint):
pocketReturns = []
for t in range(numTrials):
trialVals = playRoulette(game, trialSize, 2, 1,
toPrint)
pocketReturns.append(trialvals)
return pocketReturns
numTrials = 20
resultDict = {}
games = (FairRoulette, EuRoulette, AmRoulette)
for G in games:
resultDict[G()._ str_ ()1 = [1]
for numSpins in spinList:
print('\nSimulate', numTrials, 'trials of',
numSpins, ‘spins each')
for G in games:
pocketReturns = findPocketReturn(G(), numTrials,
numSpins, False)
expReturn = 100xsum(pocketReturns)/len(pocketReturns)
print('Exp. return for', G(), '=',
str(round(expReturn, 4)) + '%")

6.0002 LECTURE 6 22

Comparing the Games

Simulate 20
Exp. return

Exp. return
Exp. return

Simulate 20
Exp. return

Exp. return
Exp. return

Simulate 20
Exp. return

Exp. return
Exp. return

Simulate 20
Exp. return

Exp. return
Exp. return

trials of 1000 spins each
for Fair Roulette = 6.56%
for European Roulette = -2.26%
for American Roulette = -8.92%

trials of 10000 spins each

for Fair Roulette = -1.234%

for European Roulette = -4.168%
for American Roulette = -5.752%

trials of 100000 spins each
for Fair Roulette = 0.8144%
for European Roulette = -2.6506%
for American Roulette = -5.113%

trials of 1000000 spins each
for Fair Roulette = -0.0723%
for European Roulette = -2.7329%
for American Roulette = -5.212%

6.0002 LECTURE 6

23

Sampling Space of Possible Outcomes

= Never possible to guarantee perfect accuracy through
sampling

= Not to say that an estimate is not precisely correct

= Key question:

> How many samples do we need to look at before we can
have justified confidence on our answer?

= Depends upon variability in underlying distribution

6.0002 LECTURE 6 24

Quantifying Variation in Data

variance(X) = erx(lf(l— Nk
1 2
000 [S

= Standard deviation simply the square root of the variance

= Qutliers can have a big effect

= Standard deviation should always be considered relative to
mean

6.0002 LECTURE 6 25

For Those Who Prefer Code

def getMeanAndStd(X):
mean = sum(X)/len(X)
tot = 0.0
for x in X:
tot += (x - mean)**2
std = (tot/len(X))**0.5
return mean, std

6.0002 LECTURE 6 26

Confidence Levels and Intervals

= Instead of estimating an unknown parameter by a single
value (e.g., the mean of a set of trials), a confidence interval
provides a range that is likely to contain the unknown value
and a confidence that the unknown value lays within that
range

= “The return on betting a pocket 10k times in European
roulette is -3.3%. The margin of error is +/- 3.5% with a 95%
level of confidence.”

= \WWhat does this mean?

= |f | were to conduct an infinite number of trials of 10k bets
each,

o My expected average return would be -3.3%

o My return would be between roughly -6.8% and +0.2% 95% of
the time

6.0002 LECTURE 6 vy

Ripped from the Headlines

= “The poll finds that 49 percent of Americans say the
president should be impeached and removed from
office, while 47 percent say he should not... The margin
of sampling error is plus or minus 3.5 percentage
points.” -- October 31, 2019

ean?

9t d0€> this ™

Wh

6.0002 LECTURE 6 28

Empirical Rule

= Under some assumptions discussed later
> ~68% of data within one standard deviation of mean
o ~95% of data within 1.96 standard deviations of mean
> ~99.7% of data within 3 standard deviations of mean

6.0002 LECTURE 6 29

Applying Empirical Rule

def simGame(spinList):

for numSpins in spinList:
print('\nSimulate betting a pocket for', numTrials,
‘trials of', numSpins, ‘spins each')
for G in games:
pocketReturns = findPocketReturn(G(), numTrials,
numSpins, False)
mean, std = getMeanAndStd(pocketReturns)
resultDict[G().__str__()].append((numSpins,
10@xmean,

100%std))
print('Exp. return for', G(), '=',

str(round(100%mean, 3))

+ '%,', '+/= " + str(round(100x1.96xstd, 3))
+ '% with 95% confidence')

6.0002 LECTURE 6 30

Results

Simulate betting a pocket for 20 trials of 1000 spins each

Exp. return for Fair Roulette = -4.6%, +/—- 30.878% with 95% confidence
Exp. return for European Roulette = -1.0%, +/—- 42.011% with 95% confidence
Exp. return for American Roulette = -4.6%, +/— 40.748% with 95% confidence

Simulate betting a pocket for 20 trials of 10000 spins each

Exp. return for Fair Roulette = 0.134%, +/- 10.939% with 95% confidence
Exp. return for European Roulette = -0.82%, +/- 7.449% with 95% confidence
Exp. return for American Roulette = -5.32%, +/- 10.432% with 95% confidence

Simulate betting a pocket for 20 trials of 100000 spins each

Exp. return for Fair Roulette = 0.305%, +/- 3.138% with 95% confidence

Exp. return for European Roulette = -3.421%, +/- 3.327% with 95% confidence
Exp. return for American Roulette = -5.307%, +/- 3.138% with 95% confidence

6.0002 LECTURE 6 31

Assumptions Underlying Empirical Rule

*The mean estimation error is zero

=The distribution of the errors in the estimates is
normal

0.40 Nornlqal Dilstribultion, Mean|= 0 alnd SDI =1

0.35

0.30

0.25

0.20

6.0002 LECTURE 6 32

Exploiting Randomness

= Using randomized computation to model stochastic
situations

= Using randomized computation to solve problems that
are not inherently random

" E.g., what's the value of T

6.0002 LECTURE 6

circumference L
=m area = wx*radius

diameter

6.0002 LECTURE 6 34

Rhind Papyrus (~1550 BCE)

4%(8/9)2 =3.16
6.0002 LECTURE 6 35

~1100 Years Later

“And he made a molten sea, ten cubits
from the one brim to the other: it was
round all about, and his height was five
cubits: and a line of thirty cubits did

compass it round about.”
—1 Kings 7.23

6.0002 LECTURE 6

36

~300 Years Later (Archimedes)

3 .XDA%B

Perimeter of interior hexagon is 6r
Circumference of circle is 2mtr
So 3is alower bound on mt

, Similarly, the length of the sides of
I,-" The outer hexagon is an upper bound
~ onm

Archimedes used a 96-sided polygon

3+10/71<mn<3+10/70
3.140845070422535< 1< 3.142857142857143

6.0002 LECTURE 6 37

700 Years later

= Zu Chongzhi used polygons with 24,576 sides!

3.1415926 < m < 3.1415927

And > 800 Years Later

= Adriaan Anthonisz (1527-1607) estimated it at
355/113 (roughly 3.1415929203539825)

6.0002 LECTURE 6

~1300 Years Later (Buffon-Laplace)

A, =2*2=4
1 A =Tr’=m
needles in circle area of circle

needles in square area of square

1 1

area of circle =

area of square * needles in circle

needles in square

4 x needles in circle

area of circle = :
needles in square

6.0002 LECTURE 6 40

~200 Years Later

ga———

.
aL

Crazy archer on closed course. Do not try ANYWHERE.

https://www.youtube.com/watch?v=0YM6MIjZ8IY

V4
(g0
Q
| -

af
Q

i’
>

.n

LN

42

6.0002 LECTURE 6

Simulating Buffon-Laplace Method

def throwNeedles(numNeedles):
inCircle = 0
for needle in range(1, numNeedles + 1, 1):
X = random. random()
y = random. random()
if (xkx + yxy)*x0.5 <= 1.0:
inCircle += 1
if needle%10000000 == O:
print('Dropped another 10 million needles')
return 4x(inCircle/numNeedles)

What are the minimum and maximum estimates?

Let’s try 10 and 100 needles

6.0002 LECTURE 6 43

Simulating Buffon-Laplace Method, cont.

import numpy as np

def getEst(numNeedles, numTrials, printLevel = 0):
estimates = []
for t in range(numTrials):
piGuess = throwNeedles(numNeedles)
estimates.append(piGuess)
if printLevel > 1:
print('Finished trial', t, 'Est. =', piGuess)
sDev = np.std(estimates)
curEst = sum(estimates)/len(estimates)
if printLevel > 0:
print("{:13s} {:13s} {}"
.format(str(round(curEst, 10)),
str(round(sDev, 10)), numNeedles))
return (curEst, sDev)

6.0002 LECTURE 6 44

Simulating Buffon-Laplace Method, cont.

def estPi(precision, numTrials, printLevel = 0):
numNeedles = 100

sDev = precision
if printLevel > 0:

print("{:13s} {:13s} {}"

.format('Estimate', 'Std', 'Needles'))

while sDev >= precision/1.96: Why not just precision?

if printLevel > 1:

print('Trying', numNeedles, 'needles')
curEst, sDev = getEst(numNeedles, numTrials,
printLevel)

numNeedles *x= 2
return curEkst

T Est.

| 196SD |

6.0002 LECTURE 6 45

Simulating Buffon-Laplace Method, cont.

def estPi(precision, numTrials, printLevel = 0):

numNeedles = 100
sDev = precision
if printLevel > 0:

print("{:13s} {:13s} {}"

.format('Estimate', 'Std', 'Needles'))

while sDev >= precision/1.96:

if printLevel > 1:

print('Trying', numNeedles, 'needles')
curEst, sDev = getEst(numNeedles, numTrials,

printLevel)
numNeedles %= 2
return curkst
est = 3.152

Est+1.96*std = 3.3385
| 2.96-3.34 | 3.3385-pi = 0.197

6.0002 LECTURE 6 46

Output

m
un
r+
-
=
Q
r+
(D

WWwWwwwwwwwwwww

.152

. 1415

.131

. 138875

. 1390625

. 1445625

. 14053125

. 1415

. 14271875

. 142375

. 1408544922
. 1409003906
.1417026367

Std
0.1417603612

o I I I TS I I S I s S

.1154458748
. 0745922248
. 0574073983
. 0468631235
. 0323536971
. 0203694155
. 015885362

. 0110747967
. 007102177

. 0055614574
. 0037853099
. 0023156432

6.0002 LECTURE 6

Needles
100
200
400
800
1600
3200
6400
12800
25600
51200
102400
204800
409600

|nnpr0VH18?

onically improving?

47

Being Right is Not Good Enough

= Not sufficient to produce a good answer
= Need to have reason to believe that it is close to right

" |n this case, small standard deviation implies that we
are close to the true value of

Right?

6.0002 LECTURE 6 48

Generally Useful Technique

= To estimate the area of some region, R

> Pick an enclosing region, E, such that the area of E is easy
to calculate and R lies completely within E

o Pick a set of random points that lie within E
o Let F be the fraction of the points that fall within R
o Multiply the area of E by F

= Way to estimate integrals

6.0002 LECTURE 6 49

Sin(x)

sin(x)

1.0

6.0002 LECTURE 6 50

Random Points

Plot a Function and Get Min and Max

import matplotlib.pyplot as plt

def evalFcn(fcn, minX, maxX, toPlot):

xVals = []
yVals = []
incr = 0.001

curvVal = minX

while curVal < maxX:
xVals.append(curVal)
yVals.append(fcn(curVal))
curVal += incr

if toPlot:
plt.plot(xVals, yVals)
plt.hlines(0, minX, maxX)
plt.xlim(minX, maxX)
plt.title(fcn. _name_ + "(x)")

return min(yVals), max(yVals)

6.0002 LECTURE 6 52

Integrate

def dropNeedles(fcn, minX, maxX, minY, maxY, numNeedles, toPlot):
underCurve = 0
for needles in range(l, numNeedles + 1):
x = random.uniform(minX, maxX)
y = random.uniform(minY, maxy)
if y >0 and y < fcn(x):
underCurve += 1

if toPlot and needles%100 == O:
plt.plot(x, y, 'bo")
elif y < @ and y > fcn(x):
underCurve -= 1
if toPlot and needles%100 == 0O:

plt.plot(x, y, 'ro")
return (underCurve/numNeedles)*(maxX - minX)*(maxY - minY)

def quadrature(fcn, minX, maxX, toPlot = True):
minY, maxY = evalFcn(fcn, minX, maxX, toPlot)
print('Integral of', fcn._ name_, 'from', round(minX, 2),
‘to', round(maxX, 2), '=',
round(dropNeedles(fcn, minX, maxX, minY, maxy,\
1000000, toPlot), 2))

6.0002 LECTURE 6 53

Test Quadrature

quadrature(np.
plt.figure()
quadrature(np.
plt.figure()
quadrature(np.

Integral of sin
Integral of sin
Integral of cos

sin, @, np.pi, True)

sin, @, 2*np.pi, True)

cos, 0, np.pi, True)

from 0 to 3.14
from 0 to 6.28
from 0 to 3.14

6.0002 LECTURE 6

2.0
0.01
-0.01

sindx)

10

