DICTIONARIES,
DEBUGGING, EXCEPTIONS

(download slides and .py files to follow along!)
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LAST TIME

= tuples - immutable

= |ists - mutable

= aliasing, cloning

= mutability side effects




TODAY

= dictionaries — another mutable object type

= debugging

= exceptions, assertions
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Assigned Reading

= Section 5.6

= Chapter 6
= Chapter 7 Introduction to

siHQ', Pinhon

,.'Iication to Und}rséding Data

/econ. edition 7 4

John V. Gu
/' J7 4
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DICTIONARIES




HOW TO STORE
STUDENT INFO

= 5o far, can store using separate lists for every info

names = |(['Ana'|, 'John', 'Matt', 'Katy']
grade = |(|['B', ['"A+', 'A', 'A']
course = [[2.00,] 6.00, 20.002, 9.01]

= 3 separate list for each item
= each list must have the same length

= info stored across lists at same index, each index
refers to info for a different person
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HOW TO UPDATE/RETRIEVE
STUDENT INFO

def get grade(student, name list, grade list, course list):

1 = name list.index (student)
grade = grade list[i]
course = course list[i]

return (course, grade)

= messy if have a lot of different info to keep track of
= must maintain many lists and pass them as arguments
= must always index using integers

" must remember to change multiple lists
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A BETTER AND CLEANER WAY —
A DICTIONARY

" nice to index item of interest directly (not always int)

" nice to use one data structure, no separate lists

A list A dictionary
0 Elem 1 Key 1 Val 1
1 Elem 2 Key 2 Val 2
2 Elem 3 Key 3 Val 3
3 Elem 4 Key 4 Val 4
nCh e\e(oe“‘ c,i‘f;“o\\ e\e ™




A PYTHON DICTIONARY

= store pairs of data
* key
 value (any object type)

my dict =| {}

grades = {'Ana':'B', 'John':'A+', 'Matt':'A', 'Katy':'A'}

et 1 T (.

keyl vall key2 val2 key3  val3 key4d val4
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DICTIONARY LOOKUP

= similar to indexing into a list

= Jooks up the key

= returns the value associated
with the key

= if key isn’t found, get an error

grades = {'Ana':'B', 'John':'A+', 'Matt':'A', 'Katy':'A'}
grades|['John'] - evaluatesto 'A+"

grades|['Laura'] = givesaKeyError
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CTIONARY
PERATIONS

ORW,

grades = {'Ana':'B', 'John':'A+', 'Matt':'A', 'Katy':'A'}
= add an entry

grades | 'Laura'] = 'A'
= test if key in dictionary

"John' in grades - returns True
'Daniel' in grades - returns False

= delete entry

del (grades['Ana'])
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CTIONARY
PERATIONS

ORW,

grades = {'Ana':'B', 'John':'A+', 'Matt':'A', 'Katy':'A'}

(\,@ed
. . G
= get an iterable that acts like a tuple of all keys 00%“":
fo\2
grades. keys () o
- returnsdict keys(['Matt',6 'Katy','John', 'Ana'])
= get an iterable that acts like a tuple of all values (aﬂxeed
Wo
grades.values () QO%é

> returns dict values(['A', 'A+', 'B', 'A']) O
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DICTIONARY KEYS and VALUES

= values
* any type (immutable and mutable)

* can be duplicates
* dictionary values can be lists, even other dictionaries!

= keys
* must be unique

* immutable type (int, float, string, tuple, bool)—actually
need an object that is hashable (but all immutable types are
hashable)

* careful with float type as a key

" no order to keys or values!
d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44]}
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list VS dict

= ordered sequence of " matches “keys” to
elements “values”

= look up elements by an " [ook up one item by
integer index another item

" indices have an order " no order is guaranteed
" index is an integer = key can be any

immutable type
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EXAMPLE: THREE FUNCTIONS TO
ANALYZE SONG LYRICS

1) create a frequency dictionary mapping str:int

2) find word that occurs the most and how many times
* use a list, in case there is more than one word

* returnatuple (1ist, int) for (words list, highest freq)

3) find the words that occur at least X times
* let user choose “at least X times”, so allow as parameter

* return a list of tuples, each tupleisa (1ist, int)
containing the list of words ordered by their frequency

* IDEA: From song dictionary, find most frequent word. Delete
most common word. Repeat. It works because you are
mutating the song dictionary.
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CREATING A DICTIONARY

def generate word dict (song):

words list = song.split() Vﬁ&
- \
el
word dict = {} 529 %
— X 66'\(\ 3‘36“
for w in words list: o' -wﬂ?‘
‘ d\g\v (\\
if w in word _dict: o gue®
W NO 2\
word dict[w] += 1 @Wé’ &gdee
©
else: dd“éé
: \"\N 60(\0
word dict[w] = 1 e

return word dict
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USING THE DICTIONARY

N
N\ e
def find frequent word (word dict): @&égégﬁﬁ
_ _ _ W
word = [] ~
highest = max(word dict.values())
for w 1n word dict.keys(): &
if word dict([w] == highest: §®d§&W&
e
word.append (w) e

return (word, highest)
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_EVERAGING DICTIONARY

PROPERTIES -
ROPERTIE
%¢10§®0
e O o
def occurs often(word dict, atleast): o°&Wa§“
f - 0((\(0 5’(.3\\
freq list = [] ' X0
— A%
done = False
while not done:
word freq tuple = find frequent word(word dict)
1f word freqg tuple[l] < atleast: e “ﬁ§
— — A\ X
done = True ﬁ@éwi%ﬁﬁa
else: @g@
freq list.append(word freqg tuple)
for 1 in word freqg tuple[0]:
del (word dict[i]) \9&6
return freqg list @
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FIBONACCI RECURSIVE CODE
(MULTIPLE BASE CASES)

def fib(n):

1f n == 1:
return 1
elif n == 2:
return 2
else:

return fib(n-1) + fib(n-2)
= Two base cases

= Calls itself twice

= This code is inefficient




INEFFICIENT FIBONACCI

fib(n) = fib(n-1) + fib(n-2)

Z/// fib( \\\&

fib( fib (
z/// \\\& Z/// \\\&
fib (3) fib(2) fib ( fib (
fib(2) fib (1)
c’bc’es
e
\03®

= recalculating the same values many times!

= could keep track of already calculated values




FIBONACCI WITH A DICTIONARY
(aka MEMOIZATION)

def fib efficient(n, d):

if n in d:

return dn]
else:
ans = fib efficient(n-1, d) + fib efficient (n-2, d)

d[n] = ans
return ans <X
Q¢ oo
d = {1:1, 2:2} @

print (fib efficient (6, d)) ®@0

= do a lookup first in case already calculated the value

= modify dictionary as progress through function calls
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HOW MUCH MORE EFFICIENT?

= calling fib(34) results in 11,405,773 recursive calls
= calling fib_efficient(34) results in 65 recursive calls!
= very efficient!

= this only works for functions without side effects (i.e.,
the procedure will always produce the same result for a
specific argument independent of any other
computations between calls)
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TESTING, DEBUGGING




4 DEFENSIVE PROGRAMMING A

* Write specifications for functions
* Modularize programs
* Check conditions on inputs/outputs (assertions)/

k / \
/ TESTING/VALIDATION \ / DEBUGGING \
 Compare input/output  Study events leading up
pairs to specification to an error

III

* “It's not working e “Whyis it not working?”
* “How can | break my e “How can | fix my

\ program?” /\ program?” /
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= from the start, design code to ease this part

= break program up into modules that can be tested
and debugged individually

= document constraints on modules
* what do you expect the input to be?
* what do you expect the output to be?

= document assumptions behind code design




WHEN ARE YOU READY TO
TEST?

= ensure code runs
°* remove syntax errors

* remove static semantic errors
* Python interpreter can usually find these for you

" have a set of expected results
* aninput set

* for each input, the expected output




CLASSES OF TESTS

= Unit testing
* validate each piece of program
* testing each function separately

= Regression testing
* add test for bugs as you find them
* catch reintroduced errors that were previously fixed

= Integration testing
* does overall program work?
* tend to rush to do this
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TESTING APPROACHES

" intuition about natural boundaries to the problem
def i1s bigger (x, y):
""" Assumes x and y are ints
Returns True if y is less than x, else False """

* cah you come up with some natural partitions?

" if no natural partitions, might do random testing
* probability that code is correct increases with more tests
* better options below

= black box testing
* explore paths through specification

= glass box testing
* explore paths through code
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BLACK BOX TESTING

def sqgrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= xteps """

= designed without looking at the code

" can be done by someone other than the implementer to
avoid some implementer biases

" testing can be reused if implementation changes

= paths through specification
* build test cases in different natural space partitions

* also consider boundary conditions (empty lists, singleton
list, large numbers, small numbers)
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BLACK BOX TESTING

def sqgrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= xteps """

boundary 0 0.0001
perfect square 25 0.0001

less than 1 0.05 0.0001
irrational square root 2 0.0001
extremes 2 1.0/2.0*%*64.0
extremes 1.0/2.0**64.0 1.0/2.0**64.0
extremes 2.0%*64.0 1.0/2.0*%*%64.0
extremes 1.0/2.0**64.0 2.0**64.0
extremes 2.0**64.0 2.0%*64.0
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GLASS BOX TESTING

= use code directly to guide design of test cases

= called path-complete if every potential path through
code is tested at least once

= what are some drawbacks of this type of testing?
* can go through loops arbitrarily many times

* missing paths ndition?
fac
. . arts ©
= guidelines ase P ed A O o
* branches - \00P ™ <1500 exet or*

m ceS
& ec\x"ed 0931 ca I\
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GLASS BOX TESTING

def abs (x):
""" Assumes X 1s an int
Returns x 1f x>=0 and —-x otherwise """
if x < -1:
return —x
else:
return x

= 3 path-complete test suite could miss a bug
= path-complete test suite: 2 and -2
" but abs(-1) incorrectly returns -1

= should still test boundary cases
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BUGS

(YT 2 YHD m_m_,,,..._q
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DEBUGGING

= once you have discovered that your code does not run
properly, you want to:

° isolate the bug(s)

o eradicate the bug(s)
o retest until code runs correctly for all casessteep learning curve

" goal is to have a bug-free program

= tools
* builtin to IDLE and Anaconda

* Python Tutor
° print statement
* use your brain, be systematic in your hunt
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ERROR MESSAGES — EASY

" trying to access beyond the limits of a list
test = [1,2,3] then test[4] - IndexError

= trying to convert an inappropriate type
int (test) - TypeError

= referencing a non-existent variable
a - NameError

" mixing data types without appropriate coercion
'3'/4 - TypeError

= forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]
print (a) - SyntaxError
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LOGIC ERRORS - HARD

= think before writing new code

= draw pictures, take a break

= explain the code to
°* someone else

* arubber ducky




DEBUGGING STEPS

= study program code
* don’t ask what is wrong
* ask how did | get the unexpected result
* is it part of a family?

= scientific method
* study available data
* form hypothesis
* repeatable experiments
* pick simplest input to test with
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PRINT STATEMENTS

= good way to test hypothesis

= when to print
* enter function

* parameters
* function results

= use bisection method
* put print halfway in code
* decide where bug may be depending on values
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5 Minute Break — petsdimctoibabiods

‘lll
|
A

Actual
programming

| Debating for
30 minutes on
how to name a
variable

When my code somehow just works
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EXCEPTIONS,
ASSERTIONS




EXCEPTIONS AND ASSERTIONS

= what happens when procedure execution hits an
unexpected condition?

= get an exception... to what was expected
* trying to access beyond list limits

test = [1,7,4]

test[4] - IndexError
* trying to convert an inappropriate type

int (test) - TypeError
* referencing a non-existing variable

a - NameError

* mixing data types without coercion
'5'/4 - TypeError
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OTHER TYPES OF EXCEPTIONS

= already seen common error types:
* SyntaxError: Python can’t parse program

* NameError: local or global name not found
e AttributeError: attribute reference fails
* TypeError: operand doesn’t have correct type

* ValueError: operand type okay, but value is illegal

* TOError: |O system reports malfunction (e.g. file not
found)
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DEALING WITH EXCEPTIONS

= Python code can provide handlers for exceptions

try:
a = int (1nput ("Tell me one number:"))
b = 1nt(input ("Tell me another number:"))
print (a/b)

except:

print ("Bug 1n user 1input.")

= exceptions raised by any statement in body of try are
handled by the except statement and execution continues
with the body of the except statement
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HANDLING SPECIFIC
- XCEPTIONS

" have separate except clauses to deal with a particular
type of exception

try:
a = 1nt(input ("Tell me one number: "))
b = int(input ("Tell me another number: "))
print ("a/b =", a/b)
print ("atb = ", a+b) @
except| ValueError: dﬁ»«&S
print ("Could not convert to a number.") Qﬁ&é@i)
except| ZeroDivisionError: \dﬂﬁo
print ("Can't divide by zero")
except: <O 3\\(
g

print ("Something went very wrong.")
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OTHER EXCEPTIONS

" clse:

* body of this is executed when execution of associated
trv body completes with no exceptions

=finally:
* body of this is always executed after try, else and

except clauses, even if they raised another error or
executed a break, continue or return

* useful for clean-up code that should be run no matter
what else happened (e.g. close a file)
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WHAT TO DO WITH
EXCEPTIONS?

= what to do when encounter an error?

= fail silently:
* substitute default values or just continue
* bad ideal user gets no warning

= return an “error” value
 what value to choose?

* complicates code having to check for a special value

= stop execution, signal error condition

* in Python: raise an exception
raise ValueError ("something is wrong")
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- XAMPLE: RAISING AN
-XCEPTION

def get ratios(Ll, L2):

""" Assumes: L1 and L2 are lists of equal length of numbers
Returns: a list containing L1[i]/L2[i] """
ratios = []
for index in range(len(Ll)) :
try:
ratios.append (Ll [index]/L2[index])
except ZeroDivisionError:

Q@N ééﬁ% ratios.append(float('nan')) #nan = not a number

!
200 ((\‘0\\ except:

e raise ValueError ('get ratios called with bad arg')

return ratios
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EXAMPLE OF EXCEPTIONS

= assume we are given a class list for a subject: each
entry is a list of two parts

* a list of first and last name for a student

* a list of grades on assignments

test grades = [[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]1]

= create a new class list, with name, grades, and an
average

[[['peter', 'parker'], [80.0, 70.0, 85.0], 78.33333],
[['bruce', 'wayne'], [100.0, 80.0, 74.0], 84.666667]]]
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EXAMPLE

CODE [[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['"bruce', 'wayne'], [100.0, 80.0, 74.0]]]

def get stats(class list):
new stats = []
for elt in class list:
new stats.append([elt[0], elt[1l], avg(elt[l])])

return new_stats

def avg(grades) :

return sum(grades)/len (grades)
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ERROR IF NO GRADE FOR A
STUDENT

= if one or more students don’t have any grades,
get an error

test grades = [ 'peter', 'parker'], [10.0, 5.0, 85.0]],

bruce', 'wayne'], [10.0, 8.0, 74.0]],

'captain', 'america'l], [8.0,10.0,96.0]],
"thor'], []]]

" get ZeroDivisionError: float division by zero
because try to

return sum(grades) /len(grades)
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OPTION 1: FLAG THE ERROR
BY PRINTING A MESSAGE

= decide to notify that something went wrong with a msg

def avg(grades):
try:
return sum(grades)/len (grades)
except ZeroDivisionError:
print ('warning: no grades data')

" running on some test data gives 53¢

Wﬁ%

warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666060],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.833333347], &@
OO
[['captain', 'america'l], [8.0, 10.0, 96.0], 17.5],\ﬁg@g2@ﬁ@ﬁ
o (O
[['thor'], [],|None]] 0% @ et
(\0‘,\\ e*(a
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OPTION 2: CHANGE THE POLICY

= decide that a student with no grades gets a zero

def avg(grades):
try:
return sum(grades)/len (grades)
except ZeroDivisionError:
print ('warning: no grades data')
return 0.0 (O

. M e
= running on some test data gives A

o

warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666060],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.83333334], 9

S
[['captain', 'america'], [8.0, 10.0, 96.0], 17.5], Qfé&“\
q

[['thor'], [1,[0.0]] o

6.0001 LECTURE 6




ASSERTIONS

= want to be sure that assumptions on state of
computation are as expected

= use an assert statement to raise an
AssertionError exception if assumptions not met

= an example of good defensive programming
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EXAMPLE

def avg(grades) :

assert len(grades) != 0, 'no grades data'
return sum(grades)/len (grades) e@ﬁk
ORI
5\\)(\0&\ ed\%‘e (\O\’ ((\e
'\((\(:e(’{\o(\
20

" raises an AssertionError if it is given an empty list for
grades

= otherwise runs ok
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ASSERTIONS AS DEFENSIVE

PROGRAM

MING

= assertions don’t allow a programmer to control
response to unexpected conditions

= ensure that execution halts whenever an expected
condition is not met

= typically used to check inputs to functions, but can be

used anywhere

= can be used to check outputs of a function to avoid
propagating bad values

" can make it easier to locate a source of a bug




WHERE TO USE ASSERTIONS?

= goal is to spot bugs as soon as introduced and make
clear where they happened

" yse as a supplement to testing
" raise exceptions if users supplies bad data input

= use assertions to
* check types of arguments or values

* check that invariants on data structures are met
* check constraints on return values

* check for violations of constraints on procedure (e.g. no
duplicates in a list)
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