
DICTIONARIES,
DEBUGGING, EXCEPTIONS
(download slides and .py files to follow along!)

6.0001 LECTURE 6

6.0001 LECTURE 6 1

LAST TIME
 tuples - immutable

 lists - mutable

 aliasing, cloning

mutability side effects

6.0001 LECTURE 6 2

TODAY
 dictionaries – another mutable object type

 debugging

 exceptions, assertions

6.0001 LECTURE 6 3

Assigned Reading
 Section 5.6

 Chapter 6

 Chapter 7

6.0001 LECTURE 1 4

DICTIONARIES

6.0001 LECTURE 6 5

HOW TO STORE
STUDENT INFO
 so far, can store using separate lists for every info
names = ['Ana', 'John', 'Matt', 'Katy']

grade = ['B', 'A+', 'A', 'A']

course = [2.00, 6.00, 20.002, 9.01]

 a separate list for each item
 each list must have the same length
 info stored across lists at same index, each index
refers to info for a different person

6.0001 LECTURE 6 6

HOW TO UPDATE/RETRIEVE
STUDENT INFO
def get_grade(student, name_list, grade_list, course_list):

i = name_list.index(student)

grade = grade_list[i]

course = course_list[i]

return (course, grade)

messy if have a lot of different info to keep track of

must maintain many lists and pass them as arguments

must always index using integers

must remember to change multiple lists
6.0001 LECTURE 6 7

A BETTER AND CLEANER WAY –
A DICTIONARY
 nice to index item of interest directly (not always int)

 nice to use one data structure, no separate lists

A list A dictionary
Elem 1

Elem 2

Elem 3

Elem 4

…

Key 1

Key 2

Key 3

Key 4

…

Val 1

Val 2

Val 3

Val 4

…

0

1

2

3

…

6.0001 LECTURE 6 8

A PYTHON DICTIONARY
 store pairs of data

• key
• value (any object type)

my_dict = {}

grades = {'Ana':'B', 'John':'A+', 'Matt':'A', 'Katy':'A'}

Key 1

Key 2

Key 3

…

Val 1

Val 2

Val 3

…

key1 val1

6.0001 LECTURE 6 9

key2 val2 key3 val3 key4 val4

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'A+'

'A'

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'A+'

'A'

DICTIONARY LOOKUP
 similar to indexing into a list

 looks up the key

 returns the value associated
with the key

 if key isn’t found, get an error

6.0001 LECTURE 6 10

grades = {'Ana':'B', 'John':'A+', 'Matt':'A', 'Katy':'A'}

grades['John']  evaluates to 'A+'

grades['Laura']  gives a KeyError

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'John':'A+', 'Matt':'A', 'Katy':'A'}

 add an entry
grades['Laura'] = 'A'

 test if key in dictionary
'John' in grades  returns True
'Daniel' in grades  returns False

 delete entry
del(grades['Ana'])

6.0001 LECTURE 6 11

'Laura' 'A'

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'A+'

'A'

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'John':'A+', 'Matt':'A', 'Katy':'A'}

 get an iterable that acts like a tuple of all keys
grades.keys()

 returns dict_keys(['Matt','Katy','John','Ana'])

 get an iterable that acts like a tuple of all values
grades.values()

 returns dict_values(['A', 'A+', 'B', 'A'])

6.0001 LECTURE 6 12

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'A+'

'A'

DICTIONARY KEYS and VALUES
 values

• any type (immutable and mutable)
• can be duplicates
• dictionary values can be lists, even other dictionaries!

 keys
• must be unique
• immutable type (int, float, string, tuple,bool) – actually

need an object that is hashable (but all immutable types are
hashable)

• careful with float type as a key

 no order to keys or values!
d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44]}

6.0001 LECTURE 6 13

list vs dict

6.0001 LECTURE 6 14

 ordered sequence of
elements

 look up elements by an
integer index

 indices have an order

 index is an integer

matches “keys” to
“values”

 look up one item by
another item

 no order is guaranteed

 key can be any
immutable type

EXAMPLE: THREE FUNCTIONS TO
ANALYZE SONG LYRICS

1) create a frequency dictionary mapping str:int

2) find word that occurs the most and how many times
• use a list, in case there is more than one word
• return a tuple (list,int) for (words_list, highest_freq)

3) find the words that occur at least X times
• let user choose “at least X times”, so allow as parameter
• return a list of tuples, each tuple is a (list, int)

containing the list of words ordered by their frequency
• IDEA: From song dictionary, find most frequent word. Delete

most common word. Repeat. It works because you are
mutating the song dictionary.

6.0001 LECTURE 6 15

CREATING A DICTIONARY
def generate_word_dict(song):

words_list = song.split()

word_dict = {}

for w in words_list:

if w in word_dict:

word_dict[w] += 1

else:

word_dict[w] = 1

return word_dict

6.0001 LECTURE 6 16

USING THE DICTIONARY

def find_frequent_word(word_dict):

word = []

highest = max(word_dict.values())

for w in word_dict.keys():

if word_dict[w] == highest:

word.append(w)

return (word, highest)

6.0001 LECTURE 6 17

LEVERAGING DICTIONARY
PROPERTIES

def occurs_often(word_dict, atleast):

freq_list = []

done = False

while not done:

word_freq_tuple = find_frequent_word(word_dict)

if word_freq_tuple[1] < atleast:

done = True

else:

freq_list.append(word_freq_tuple)

for i in word_freq_tuple[0]:

del(word_dict[i])

return freq_list

6.0001 LECTURE 6 18

FIBONACCI RECURSIVE CODE
(MULTIPLE BASE CASES)
def fib(n):

if n == 1:

return 1

elif n == 2:

return 2

else:

return fib(n-1) + fib(n-2)

 Two base cases
 Calls itself twice
 This code is inefficient

6.0001 LECTURE 6 19

INEFFICIENT FIBONACCI
fib(n) = fib(n-1) + fib(n-2)

 recalculating the same values many times!
 could keep track of already calculated values

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1)

6.0001 LECTURE 6 20

FIBONACCI WITH A DICTIONARY
(aka MEMOIZATION)
def fib_efficient(n, d):

if n in d:
return d[n]

else:
ans = fib_efficient(n-1, d) + fib_efficient(n-2, d)
d[n] = ans
return ans

d = {1:1, 2:2}
print(fib_efficient(6, d))

 do a lookup first in case already calculated the value

modify dictionary as progress through function calls

6.0001 LECTURE 6 21

HOW MUCH MORE EFFICIENT?
 calling fib(34) results in 11,405,773 recursive calls

 calling fib_efficient(34) results in 65 recursive calls!

 very efficient!

 this only works for functions without side effects (i.e.,
the procedure will always produce the same result for a
specific argument independent of any other
computations between calls)

6.0001 LECTURE 6 22

TESTING, DEBUGGING

6.0001 LECTURE 6 23

DEFENSIVE PROGRAMMING
• Write specifications for functions
• Modularize programs
• Check conditions on inputs/outputs (assertions)

TESTING/VALIDATION
• Compare input/output

pairs to specification
• “It’s not working!”
• “How can I break my

program?”

DEBUGGING
• Study events leading up

to an error
• “Why is it not working?”
• “How can I fix my

program?”

246.0001 LECTURE 6

SET YOURSELF UP FOR EASY
TESTING AND DEBUGGING
 from the start, design code to ease this part

 break program up into modules that can be tested
and debugged individually

 document constraints on modules
• what do you expect the input to be?
• what do you expect the output to be?

 document assumptions behind code design

256.0001 LECTURE 6

WHEN ARE YOU READY TO
TEST?
 ensure code runs

• remove syntax errors
• remove static semantic errors
• Python interpreter can usually find these for you

 have a set of expected results
• an input set
• for each input, the expected output

266.0001 LECTURE 6

CLASSES OF TESTS
 Unit testing

• validate each piece of program
• testing each function separately

 Regression testing
• add test for bugs as you find them
• catch reintroduced errors that were previously fixed

 Integration testing
• does overall program work?
• tend to rush to do this

276.0001 LECTURE 6

TESTING APPROACHES
 intuition about natural boundaries to the problem
def is_bigger(x, y):

""" Assumes x and y are ints
Returns True if y is less than x, else False """

• can you come up with some natural partitions?

 if no natural partitions, might do random testing
• probability that code is correct increases with more tests
• better options below

 black box testing
• explore paths through specification

 glass box testing
• explore paths through code

286.0001 LECTURE 6

def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

 designed without looking at the code
 can be done by someone other than the implementer to
avoid some implementer biases

 testing can be reused if implementation changes

 paths through specification
• build test cases in different natural space partitions
• also consider boundary conditions (empty lists, singleton

list, large numbers, small numbers)

BLACK BOX TESTING

296.0001 LECTURE 6

def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

BLACK BOX TESTING

30

CASE x eps

boundary 0 0.0001

perfect square 25 0.0001

less than 1 0.05 0.0001

irrational square root 2 0.0001

extremes 2 1.0/2.0**64.0

extremes 1.0/2.0**64.0 1.0/2.0**64.0

extremes 2.0**64.0 1.0/2.0**64.0

extremes 1.0/2.0**64.0 2.0**64.0

extremes 2.0**64.0 2.0**64.0
6.0001 LECTURE 6

GLASS BOX TESTING
 use code directly to guide design of test cases

 called path-complete if every potential path through
code is tested at least once

 what are some drawbacks of this type of testing?
• can go through loops arbitrarily many times
• missing paths

 guidelines
• branches
• for loops
• while loops

316.0001 LECTURE 6

GLASS BOX TESTING
def abs(x):

""" Assumes x is an int
Returns x if x>=0 and –x otherwise """
if x < -1:

return –x
else:

return x

 a path-complete test suite could miss a bug

 path-complete test suite: 2 and -2

 but abs(-1) incorrectly returns -1

 should still test boundary cases

326.0001 LECTURE 6

BUGS

336.0001 LECTURE 6

DEBUGGING
 once you have discovered that your code does not run
properly, you want to:
◦ isolate the bug(s)
◦ eradicate the bug(s)
◦ retest until code runs correctly for all casessteep learning curve

 goal is to have a bug-free program

 tools
• built in to IDLE and Anaconda
• Python Tutor
• print statement
• use your brain, be systematic in your hunt

346.0001 LECTURE 6

ERROR MESSAGES – EASY
 trying to access beyond the limits of a list
test = [1,2,3] then test[4]  IndexError

 trying to convert an inappropriate type
int(test)  TypeError

 referencing a non-existent variable
a  NameError

mixing data types without appropriate coercion
'3'/4  TypeError

 forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]
print(a)  SyntaxError

356.0001 LECTURE 6

LOGIC ERRORS - HARD
 think before writing new code

 draw pictures, take a break

 explain the code to
• someone else
• a rubber ducky

366.0001 LECTURE 6

DEBUGGING STEPS
 study program code

• don’t ask what is wrong
• ask how did I get the unexpected result
• is it part of a family?

 scientific method
• study available data
• form hypothesis
• repeatable experiments
• pick simplest input to test with

376.0001 LECTURE 6

PRINT STATEMENTS
 good way to test hypothesis

 when to print
• enter function
• parameters
• function results

 use bisection method
• put print halfway in code
• decide where bug may be depending on values

386.0001 LECTURE 6

5 Minute Break

6.0001 LECTURE 8 39

When my code somehow just works

EXCEPTIONS,
ASSERTIONS

6.0001 LECTURE 6 40

EXCEPTIONS AND ASSERTIONS
 what happens when procedure execution hits an
unexpected condition?
 get an exception… to what was expected

• trying to access beyond list limits
test = [1,7,4]
test[4]  IndexError

• trying to convert an inappropriate type
int(test)  TypeError

• referencing a non-existing variable
a  NameError

• mixing data types without coercion
'5'/4  TypeError

416.0001 LECTURE 6

OTHER TYPES OF EXCEPTIONS
 already seen common error types:

• SyntaxError: Python can’t parse program
• NameError: local or global name not found
• AttributeError: attribute reference fails
• TypeError: operand doesn’t have correct type
• ValueError: operand type okay, but value is illegal
• IOError: IO system reports malfunction (e.g. file not

found)

426.0001 LECTURE 6

DEALING WITH EXCEPTIONS
 Python code can provide handlers for exceptions

try:
a = int(input("Tell me one number:"))
b = int(input("Tell me another number:"))
print(a/b)

except:
print("Bug in user input.")

 exceptions raised by any statement in body of try are
handled by the except statement and execution continues
with the body of the except statement

436.0001 LECTURE 6

HANDLING SPECIFIC
EXCEPTIONS
 have separate except clauses to deal with a particular
type of exception
try:

a = int(input("Tell me one number: "))
b = int(input("Tell me another number: "))
print("a/b = ", a/b)
print("a+b = ", a+b)

except ValueError:
print("Could not convert to a number.")

except ZeroDivisionError:
print("Can't divide by zero")

except:
print("Something went very wrong.")

446.0001 LECTURE 6

OTHER EXCEPTIONS
 else:

• body of this is executed when execution of associated
try body completes with no exceptions

 finally:
• body of this is always executed after try, else and
except clauses, even if they raised another error or
executed a break, continue or return

• useful for clean-up code that should be run no matter
what else happened (e.g. close a file)

456.0001 LECTURE 6

WHAT TO DO WITH
EXCEPTIONS?
 what to do when encounter an error?

 fail silently:
• substitute default values or just continue
• bad idea! user gets no warning

 return an “error” value
• what value to choose?
• complicates code having to check for a special value

 stop execution, signal error condition
• in Python: raise an exception
raise ValueError("something is wrong")

466.0001 LECTURE 6

EXAMPLE: RAISING AN
EXCEPTION

def get_ratios(L1, L2):

""" Assumes: L1 and L2 are lists of equal length of numbers

Returns: a list containing L1[i]/L2[i] """

ratios = []

for index in range(len(L1)):

try:

ratios.append(L1[index]/L2[index])

except ZeroDivisionError:

ratios.append(float('nan')) #nan = not a number

except:

raise ValueError('get_ratios called with bad arg')

return ratios

476.0001 LECTURE 6

EXAMPLE OF EXCEPTIONS
 assume we are given a class list for a subject: each
entry is a list of two parts
• a list of first and last name for a student
• a list of grades on assignments

 create a new class list, with name, grades, and an
average

48

test_grades = [[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

[[['peter', 'parker'], [80.0, 70.0, 85.0], 78.33333],
[['bruce', 'wayne'], [100.0, 80.0, 74.0], 84.666667]]]

6.0001 LECTURE 6

EXAMPLE
CODE

def get_stats(class_list):

new_stats = []

for elt in class_list:

new_stats.append([elt[0], elt[1], avg(elt[1])])

return new_stats

def avg(grades):

return sum(grades)/len(grades)

49

[[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

6.0001 LECTURE 6

ERROR IF NO GRADE FOR A
STUDENT
 if one or more students don’t have any grades,
get an error
test_grades = [[['peter', 'parker'], [10.0, 5.0, 85.0]],

[['bruce', 'wayne'], [10.0, 8.0, 74.0]],
[['captain', 'america'], [8.0,10.0,96.0]],
[['thor'], []]]

 get ZeroDivisionError: float division by zero
because try to
return sum(grades)/len(grades)

506.0001 LECTURE 6

OPTION 1: FLAG THE ERROR
BY PRINTING A MESSAGE
 decide to notify that something went wrong with a msg
def avg(grades):

try:
return sum(grades)/len(grades)

except ZeroDivisionError:
print('warning: no grades data')

 running on some test data gives
warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666666],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.83333334],

[['captain', 'america'], [8.0, 10.0, 96.0], 17.5],

[['thor'], [], None]]

516.0001 LECTURE 6

OPTION 2: CHANGE THE POLICY
 decide that a student with no grades gets a zero
def avg(grades):

try:
return sum(grades)/len(grades)

except ZeroDivisionError:
print('warning: no grades data')
return 0.0

 running on some test data gives
warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666666],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.83333334],

[['captain', 'america'], [8.0, 10.0, 96.0], 17.5],

[['thor'], [], 0.0]]
526.0001 LECTURE 6

ASSERTIONS
 want to be sure that assumptions on state of
computation are as expected

 use an assert statement to raise an
AssertionError exception if assumptions not met

 an example of good defensive programming

536.0001 LECTURE 6

EXAMPLE
def avg(grades):

assert len(grades) != 0, 'no grades data'

return sum(grades)/len(grades)

 raises an AssertionError if it is given an empty list for
grades

 otherwise runs ok

546.0001 LECTURE 6

ASSERTIONS AS DEFENSIVE
PROGRAMMING
 assertions don’t allow a programmer to control
response to unexpected conditions

 ensure that execution halts whenever an expected
condition is not met

 typically used to check inputs to functions, but can be
used anywhere

 can be used to check outputs of a function to avoid
propagating bad values

 can make it easier to locate a source of a bug

556.0001 LECTURE 6

WHERE TO USE ASSERTIONS?
 goal is to spot bugs as soon as introduced and make
clear where they happened

 use as a supplement to testing

 raise exceptions if users supplies bad data input

 use assertions to
• check types of arguments or values
• check that invariants on data structures are met
• check constraints on return values
• check for violations of constraints on procedure (e.g. no

duplicates in a list)

566.0001 LECTURE 6

	DICTIONARIES, DEBUGGING, EXCEPTIONS�(download slides and .py files to follow along!)
	LAST TIME
	TODAY
	Assigned Reading
	DICTIONARIES
	HOW TO STORE �STUDENT INFO
	HOW TO UPDATE/RETRIEVE �STUDENT INFO
	A BETTER AND CLEANER WAY – �A DICTIONARY
	A PYTHON DICTIONARY
	DICTIONARY LOOKUP
	DICTIONARY �OPERATIONS
	DICTIONARY �OPERATIONS
	DICTIONARY KEYS and VALUES
	list 		vs			dict
	EXAMPLE: THREE FUNCTIONS TO�ANALYZE SONG LYRICS
	CREATING A DICTIONARY
	USING THE DICTIONARY
	LEVERAGING DICTIONARY PROPERTIES
	FIBONACCI RECURSIVE CODE (MULTIPLE BASE CASES)
	INEFFICIENT FIBONACCI�fib(n) = fib(n-1) + fib(n-2)
	FIBONACCI WITH A DICTIONARY (aka MEMOIZATION)
	HOW MUCH MORE EFFICIENT?
	TESTING, DEBUGGING
	Slide Number 24
	SET YOURSELF UP FOR EASY TESTING AND DEBUGGING
	WHEN ARE YOU READY TO TEST?
	CLASSES OF TESTS
	TESTING APPROACHES
	BLACK BOX TESTING
	BLACK BOX TESTING
	GLASS BOX TESTING
	GLASS BOX TESTING
	BUGS
	DEBUGGING
	ERROR MESSAGES – EASY
	LOGIC ERRORS - HARD
	DEBUGGING STEPS
	PRINT STATEMENTS
	5 Minute Break
	EXCEPTIONS, ASSERTIONS
	EXCEPTIONS AND ASSERTIONS
	OTHER TYPES OF EXCEPTIONS
	DEALING WITH EXCEPTIONS
	HANDLING SPECIFIC EXCEPTIONS
	OTHER EXCEPTIONS
	WHAT TO DO WITH EXCEPTIONS?
	EXAMPLE: RAISING AN EXCEPTION
	EXAMPLE OF EXCEPTIONS
	EXAMPLE �CODE
	ERROR IF NO GRADE FOR A STUDENT
	OPTION 1: FLAG THE ERROR BY PRINTING A MESSAGE
	OPTION 2: CHANGE THE POLICY
	ASSERTIONS
	EXAMPLE
	ASSERTIONS AS DEFENSIVE PROGRAMMING
	WHERE TO USE ASSERTIONS?

