DICTIONARIES,
DEBUGGING, EXCEPTIONS

(download slides and .py files to follow along!)

6.0001 LECTURE 6

LAST TIME

= tuples - immutable

= |ists - mutable

= aliasing, cloning

= mutability side effects

TODAY

= dictionaries — another mutable object type

= debugging

= exceptions, assertions

6.0001 LECTURE 6 3

Assigned Reading

= Section 5.6

= Chapter 6
= Chapter 7 Introduction to

siHQ', Pinhon

,.'Iication to Und}rséding Data

/econ. edition 7 4

John V. Gu
/' J7 4

6.0001 LECTURE 1

DICTIONARIES

HOW TO STORE
STUDENT INFO

= 5o far, can store using separate lists for every info

names = |(['Ana'|, 'John', 'Matt', 'Katy']
grade = |(|['B', ['"A+', 'A', 'A']
course = [[2.00,] 6.00, 20.002, 9.01]

= 3 separate list for each item
= each list must have the same length

= info stored across lists at same index, each index
refers to info for a different person

6.0001 LECTURE 6 6

HOW TO UPDATE/RETRIEVE
STUDENT INFO

def get grade(student, name list, grade list, course list):

1 = name list.index (student)
grade = grade list[i]
course = course list[i]

return (course, grade)

= messy if have a lot of different info to keep track of
= must maintain many lists and pass them as arguments
= must always index using integers

" must remember to change multiple lists

6.0001 LECTURE 6 7

A BETTER AND CLEANER WAY —
A DICTIONARY

" nice to index item of interest directly (not always int)

" nice to use one data structure, no separate lists

A list A dictionary
0 Elem 1 Key 1 Val 1
1 Elem 2 Key 2 Val 2
2 Elem 3 Key 3 Val 3
3 Elem 4 Key 4 Val 4
nCh e\e(oe“‘ c,i‘f;“o\\ e\e ™

A PYTHON DICTIONARY

= store pairs of data
* key
 value (any object type)

my dict =| {}

grades = {'Ana':'B', 'John':'A+', 'Matt':'A', 'Katy':'A'}

et 1 T (.

keyl vall key2 val2 key3 val3 key4d val4

6.0001 LECTURE 6 9

DICTIONARY LOOKUP

= similar to indexing into a list

= Jooks up the key

= returns the value associated
with the key

= if key isn’t found, get an error

grades = {'Ana':'B', 'John':'A+', 'Matt':'A', 'Katy':'A'}
grades|['John'] - evaluatesto 'A+"

grades|['Laura'] = givesaKeyError

6.0001 LECTURE 6

CTIONARY
PERATIONS

ORW,

grades = {'Ana':'B', 'John':'A+', 'Matt':'A', 'Katy':'A'}
= add an entry

grades | 'Laura'] = 'A'
= test if key in dictionary

"John' in grades - returns True
'Daniel' in grades - returns False

= delete entry

del (grades['Ana'])

6.0001 LECTURE 6

CTIONARY
PERATIONS

ORW,

grades = {'Ana':'B', 'John':'A+', 'Matt':'A', 'Katy':'A'}

(\,@ed
. . G
= get an iterable that acts like a tuple of all keys 00%“":
fo\2
grades. keys () o
- returnsdict keys(['Matt',6 'Katy','John', 'Ana'])
= get an iterable that acts like a tuple of all values (aﬂxeed
Wo
grades.values () QO%é

> returns dict values(['A', 'A+', 'B', 'A']) O

6.0001 LECTURE 6

DICTIONARY KEYS and VALUES

= values
* any type (immutable and mutable)

* can be duplicates
* dictionary values can be lists, even other dictionaries!

= keys
* must be unique

* immutable type (int, float, string, tuple, bool)—actually
need an object that is hashable (but all immutable types are
hashable)

* careful with float type as a key

" no order to keys or values!
d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44]}

6.0001 LECTURE 6 13

list VS dict

= ordered sequence of " matches “keys” to
elements “values”

= look up elements by an " [ook up one item by
integer index another item

" indices have an order " no order is guaranteed
" index is an integer = key can be any

immutable type

6.0001 LECTURE 6

EXAMPLE: THREE FUNCTIONS TO
ANALYZE SONG LYRICS

1) create a frequency dictionary mapping str:int

2) find word that occurs the most and how many times
* use a list, in case there is more than one word

* returnatuple (1ist, int) for (words list, highest freq)

3) find the words that occur at least X times
* let user choose “at least X times”, so allow as parameter

* return a list of tuples, each tupleisa (1ist, int)
containing the list of words ordered by their frequency

* IDEA: From song dictionary, find most frequent word. Delete
most common word. Repeat. It works because you are
mutating the song dictionary.

6.0001 LECTURE 6

CREATING A DICTIONARY

def generate word dict (song):

words list = song.split() Vﬁ&
- \
el
word dict = {} 529 %
— X 66'\(\ 3‘36“
for w in words list: o' -wﬂ?‘
‘ d\g\v (\\
if w in word _dict: o gue®
W NO 2\
word dict[w] += 1 @Wé’ &gdee
©
else: dd“éé
: \"\N 60(\0
word dict[w] = 1 e

return word dict

6.0001 LECTURE 6

USING THE DICTIONARY

N
N\ e
def find frequent word (word dict): @&égégﬁﬁ
_ _ _ W
word = [] ~
highest = max(word dict.values())
for w 1n word dict.keys(): &
if word dict([w] == highest: §®d§&W&
e
word.append (w) e

return (word, highest)

6.0001 LECTURE 6

_EVERAGING DICTIONARY

PROPERTIES -
ROPERTIE
%¢10§®0
e O o
def occurs often(word dict, atleast): o°&Wa§“
f - 0((\(0 5’(.3\\
freq list = [] ' X0
— A%
done = False
while not done:
word freq tuple = find frequent word(word dict)
1f word freqg tuple[l] < atleast: e “ﬁ§
— — A\ X
done = True ﬁ@éwi%ﬁﬁa
else: @g@
freq list.append(word freqg tuple)
for 1 in word freqg tuple[0]:
del (word dict[i]) \9&6
return freqg list @

6.0001 LECTURE 6

FIBONACCI RECURSIVE CODE
(MULTIPLE BASE CASES)

def fib(n):

1f n == 1:
return 1
elif n == 2:
return 2
else:

return fib(n-1) + fib(n-2)
= Two base cases

= Calls itself twice

= This code is inefficient

INEFFICIENT FIBONACCI

fib(n) = fib(n-1) + fib(n-2)

Z/// fib(\\\&

fib(fib (
z/// \\\& Z/// \\\&
fib (3) fib(2) fib (fib (
fib(2) fib (1)
c’bc’es
e
\03®

= recalculating the same values many times!

= could keep track of already calculated values

FIBONACCI WITH A DICTIONARY
(aka MEMOIZATION)

def fib efficient(n, d):

if n in d:

return dn]
else:
ans = fib efficient(n-1, d) + fib efficient (n-2, d)

d[n] = ans
return ans <X
Q¢ oo
d = {1:1, 2:2} @

print (fib efficient (6, d)) ®@0

= do a lookup first in case already calculated the value

= modify dictionary as progress through function calls

6.0001 LECTURE 6

HOW MUCH MORE EFFICIENT?

= calling fib(34) results in 11,405,773 recursive calls
= calling fib_efficient(34) results in 65 recursive calls!
= very efficient!

= this only works for functions without side effects (i.e.,
the procedure will always produce the same result for a
specific argument independent of any other
computations between calls)

6.0001 LECTURE 6

TESTING, DEBUGGING

4 DEFENSIVE PROGRAMMING A

* Write specifications for functions
* Modularize programs
* Check conditions on inputs/outputs (assertions)/

k / \
/ TESTING/VALIDATION \ / DEBUGGING \
 Compare input/output Study events leading up
pairs to specification to an error

III

* “It's not working e “Whyis it not working?”
* “How can | break my e “How can | fix my

\ program?” /\ program?” /

6.0001 LECTURE 6

S
-

- YOURSE

-STING AN

FUP

D DEB

-OR

JGG

“ASY

NG

= from the start, design code to ease this part

= break program up into modules that can be tested
and debugged individually

= document constraints on modules
* what do you expect the input to be?
* what do you expect the output to be?

= document assumptions behind code design

WHEN ARE YOU READY TO
TEST?

= ensure code runs
°* remove syntax errors

* remove static semantic errors
* Python interpreter can usually find these for you

" have a set of expected results
* aninput set

* for each input, the expected output

CLASSES OF TESTS

= Unit testing
* validate each piece of program
* testing each function separately

= Regression testing
* add test for bugs as you find them
* catch reintroduced errors that were previously fixed

= Integration testing
* does overall program work?
* tend to rush to do this

6.0001 LECTURE 6

TESTING APPROACHES

" intuition about natural boundaries to the problem
def i1s bigger (x, y):
""" Assumes x and y are ints
Returns True if y is less than x, else False """

* cah you come up with some natural partitions?

" if no natural partitions, might do random testing
* probability that code is correct increases with more tests
* better options below

= black box testing
* explore paths through specification

= glass box testing
* explore paths through code

6.0001 LECTURE 6

BLACK BOX TESTING

def sqgrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= xteps """

= designed without looking at the code

" can be done by someone other than the implementer to
avoid some implementer biases

" testing can be reused if implementation changes

= paths through specification
* build test cases in different natural space partitions

* also consider boundary conditions (empty lists, singleton
list, large numbers, small numbers)

6.0001 LECTURE 6

BLACK BOX TESTING

def sqgrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= xteps """

boundary 0 0.0001
perfect square 25 0.0001

less than 1 0.05 0.0001
irrational square root 2 0.0001
extremes 2 1.0/2.0*%*64.0
extremes 1.0/2.0**64.0 1.0/2.0**64.0
extremes 2.0%*64.0 1.0/2.0*%*%64.0
extremes 1.0/2.0**64.0 2.0**64.0
extremes 2.0**64.0 2.0%*64.0

6.0001 LECTURE 6

GLASS BOX TESTING

= use code directly to guide design of test cases

= called path-complete if every potential path through
code is tested at least once

= what are some drawbacks of this type of testing?
* can go through loops arbitrarily many times

* missing paths ndition?
fac
. . arts ©
= guidelines ase P ed A O o
* branches - \00P ™ <1500 exet or*

m ceS
& ec\x"ed 0931 ca I\

6.0001 LECTURE 6

GLASS BOX TESTING

def abs (x):
""" Assumes X 1s an int
Returns x 1f x>=0 and —-x otherwise """
if x < -1:
return —x
else:
return x

= 3 path-complete test suite could miss a bug
= path-complete test suite: 2 and -2
" but abs(-1) incorrectly returns -1

= should still test boundary cases

6.0001 LECTURE 6

BUGS

(YT 2 YHD m_m_,,,..._q

T TS,

DEBUGGING

= once you have discovered that your code does not run
properly, you want to:

° isolate the bug(s)

o eradicate the bug(s)
o retest until code runs correctly for all casessteep learning curve

" goal is to have a bug-free program

= tools
* builtin to IDLE and Anaconda

* Python Tutor
° print statement
* use your brain, be systematic in your hunt

6.0001 LECTURE 6

ERROR MESSAGES — EASY

" trying to access beyond the limits of a list
test = [1,2,3] then test[4] - IndexError

= trying to convert an inappropriate type
int (test) - TypeError

= referencing a non-existent variable
a - NameError

" mixing data types without appropriate coercion
'3'/4 - TypeError

= forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]
print (a) - SyntaxError

6.0001 LECTURE 6

LOGIC ERRORS - HARD

= think before writing new code

= draw pictures, take a break

= explain the code to
°* someone else

* arubber ducky

DEBUGGING STEPS

= study program code
* don’t ask what is wrong
* ask how did | get the unexpected result
* is it part of a family?

= scientific method
* study available data
* form hypothesis
* repeatable experiments
* pick simplest input to test with

6.0001 LECTURE 6

PRINT STATEMENTS

= good way to test hypothesis

= when to print
* enter function

* parameters
* function results

= use bisection method
* put print halfway in code
* decide where bug may be depending on values

6.0001 LECTURE 6

5 Minute Break — petsdimctoibabiods

‘lll
|
A

Actual
programming

| Debating for
30 minutes on
how to name a
variable

When my code somehow just works

6.0001 LECTURE 8 39

EXCEPTIONS,
ASSERTIONS

EXCEPTIONS AND ASSERTIONS

= what happens when procedure execution hits an
unexpected condition?

= get an exception... to what was expected
* trying to access beyond list limits

test = [1,7,4]

test[4] - IndexError
* trying to convert an inappropriate type

int (test) - TypeError
* referencing a non-existing variable

a - NameError

* mixing data types without coercion
'5'/4 - TypeError

6.0001 LECTURE 6

OTHER TYPES OF EXCEPTIONS

= already seen common error types:
* SyntaxError: Python can’t parse program

* NameError: local or global name not found
e AttributeError: attribute reference fails
* TypeError: operand doesn’t have correct type

* ValueError: operand type okay, but value is illegal

* TOError: |O system reports malfunction (e.g. file not
found)

6.0001 LECTURE 6

DEALING WITH EXCEPTIONS

= Python code can provide handlers for exceptions

try:
a = int (1nput ("Tell me one number:"))
b = 1nt(input ("Tell me another number:"))
print (a/b)

except:

print ("Bug 1n user 1input.")

= exceptions raised by any statement in body of try are
handled by the except statement and execution continues
with the body of the except statement

6.0001 LECTURE 6

HANDLING SPECIFIC
- XCEPTIONS

" have separate except clauses to deal with a particular
type of exception

try:
a = 1nt(input ("Tell me one number: "))
b = int(input ("Tell me another number: "))
print ("a/b =", a/b)
print ("atb = ", a+b) @
except| ValueError: dﬁ»«&S
print ("Could not convert to a number.") Qﬁ&é@i)
except| ZeroDivisionError: \dﬂﬁo
print ("Can't divide by zero")
except: <O 3\\(
g

print ("Something went very wrong.")

6.0001 LECTURE 6

OTHER EXCEPTIONS

" clse:

* body of this is executed when execution of associated
trv body completes with no exceptions

=finally:
* body of this is always executed after try, else and

except clauses, even if they raised another error or
executed a break, continue or return

* useful for clean-up code that should be run no matter
what else happened (e.g. close a file)

6.0001 LECTURE 6

WHAT TO DO WITH
EXCEPTIONS?

= what to do when encounter an error?

= fail silently:
* substitute default values or just continue
* bad ideal user gets no warning

= return an “error” value
 what value to choose?

* complicates code having to check for a special value

= stop execution, signal error condition

* in Python: raise an exception
raise ValueError ("something is wrong")

6.0001 LECTURE 6

- XAMPLE: RAISING AN
-XCEPTION

def get ratios(Ll, L2):

""" Assumes: L1 and L2 are lists of equal length of numbers
Returns: a list containing L1[i]/L2[i] """
ratios = []
for index in range(len(Ll)) :
try:
ratios.append (Ll [index]/L2[index])
except ZeroDivisionError:

Q@N ééﬁ% ratios.append(float('nan')) #nan = not a number

!
200 ((\‘0\\ except:

e raise ValueError ('get ratios called with bad arg')

return ratios

6.0001 LECTURE 6

EXAMPLE OF EXCEPTIONS

= assume we are given a class list for a subject: each
entry is a list of two parts

* a list of first and last name for a student

* a list of grades on assignments

test grades = [[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]1]

= create a new class list, with name, grades, and an
average

[[['peter', 'parker'], [80.0, 70.0, 85.0], 78.33333],
[['bruce', 'wayne'], [100.0, 80.0, 74.0], 84.666667]]]

6.0001 LECTURE 6

EXAMPLE

CODE [[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['"bruce', 'wayne'], [100.0, 80.0, 74.0]]]

def get stats(class list):
new stats = []
for elt in class list:
new stats.append([elt[0], elt[1l], avg(elt[l])])

return new_stats

def avg(grades) :

return sum(grades)/len (grades)

6.0001 LECTURE 6

ERROR IF NO GRADE FOR A
STUDENT

= if one or more students don’t have any grades,
get an error

test grades = ['peter', 'parker'], [10.0, 5.0, 85.0]],

bruce', 'wayne'], [10.0, 8.0, 74.0]],

'captain', 'america'l], [8.0,10.0,96.0]],
"thor'], []]]

" get ZeroDivisionError: float division by zero
because try to

return sum(grades) /len(grades)

6.0001 LECTURE 6

OPTION 1: FLAG THE ERROR
BY PRINTING A MESSAGE

= decide to notify that something went wrong with a msg

def avg(grades):
try:
return sum(grades)/len (grades)
except ZeroDivisionError:
print ('warning: no grades data')

" running on some test data gives 53¢

Wﬁ%

warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666060],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.833333347], &@
OO
[['captain', 'america'l], [8.0, 10.0, 96.0], 17.5],\ﬁg@g2@ﬁ@ﬁ
o (O
[['thor'], [],|None]] 0% @ et
(\0‘,\\ e*(a

6.0001 LECTURE 6

OPTION 2: CHANGE THE POLICY

= decide that a student with no grades gets a zero

def avg(grades):
try:
return sum(grades)/len (grades)
except ZeroDivisionError:
print ('warning: no grades data')
return 0.0 (O

. M e
= running on some test data gives A

o

warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666060],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.83333334], 9

S
[['captain', 'america'], [8.0, 10.0, 96.0], 17.5], Qfé&“\
q

[['thor'], [1,[0.0]] o

6.0001 LECTURE 6

ASSERTIONS

= want to be sure that assumptions on state of
computation are as expected

= use an assert statement to raise an
AssertionError exception if assumptions not met

= an example of good defensive programming

6.0001 LECTURE 6

EXAMPLE

def avg(grades) :

assert len(grades) != 0, 'no grades data'
return sum(grades)/len (grades) e@ﬁk
ORI
5\\)(\0&\ ed\%‘e (\O\’ ((\e
'\((\(:e(’{\o(\
20

" raises an AssertionError if it is given an empty list for
grades

= otherwise runs ok

6.0001 LECTURE 6

ASSERTIONS AS DEFENSIVE

PROGRAM

MING

= assertions don’t allow a programmer to control
response to unexpected conditions

= ensure that execution halts whenever an expected
condition is not met

= typically used to check inputs to functions, but can be

used anywhere

= can be used to check outputs of a function to avoid
propagating bad values

" can make it easier to locate a source of a bug

WHERE TO USE ASSERTIONS?

= goal is to spot bugs as soon as introduced and make
clear where they happened

" yse as a supplement to testing
" raise exceptions if users supplies bad data input

= use assertions to
* check types of arguments or values

* check that invariants on data structures are met
* check constraints on return values

* check for violations of constraints on procedure (e.g. no
duplicates in a list)

6.0001 LECTURE 6

	DICTIONARIES, DEBUGGING, EXCEPTIONS�(download slides and .py files to follow along!)
	LAST TIME
	TODAY
	Assigned Reading
	DICTIONARIES
	HOW TO STORE �STUDENT INFO
	HOW TO UPDATE/RETRIEVE �STUDENT INFO
	A BETTER AND CLEANER WAY – �A DICTIONARY
	A PYTHON DICTIONARY
	DICTIONARY LOOKUP
	DICTIONARY �OPERATIONS
	DICTIONARY �OPERATIONS
	DICTIONARY KEYS and VALUES
	list 		vs			dict
	EXAMPLE: THREE FUNCTIONS TO�ANALYZE SONG LYRICS
	CREATING A DICTIONARY
	USING THE DICTIONARY
	LEVERAGING DICTIONARY PROPERTIES
	FIBONACCI RECURSIVE CODE (MULTIPLE BASE CASES)
	INEFFICIENT FIBONACCI�fib(n) = fib(n-1) + fib(n-2)
	FIBONACCI WITH A DICTIONARY (aka MEMOIZATION)
	HOW MUCH MORE EFFICIENT?
	TESTING, DEBUGGING
	Slide Number 24
	SET YOURSELF UP FOR EASY TESTING AND DEBUGGING
	WHEN ARE YOU READY TO TEST?
	CLASSES OF TESTS
	TESTING APPROACHES
	BLACK BOX TESTING
	BLACK BOX TESTING
	GLASS BOX TESTING
	GLASS BOX TESTING
	BUGS
	DEBUGGING
	ERROR MESSAGES – EASY
	LOGIC ERRORS - HARD
	DEBUGGING STEPS
	PRINT STATEMENTS
	5 Minute Break
	EXCEPTIONS, ASSERTIONS
	EXCEPTIONS AND ASSERTIONS
	OTHER TYPES OF EXCEPTIONS
	DEALING WITH EXCEPTIONS
	HANDLING SPECIFIC EXCEPTIONS
	OTHER EXCEPTIONS
	WHAT TO DO WITH EXCEPTIONS?
	EXAMPLE: RAISING AN EXCEPTION
	EXAMPLE OF EXCEPTIONS
	EXAMPLE �CODE
	ERROR IF NO GRADE FOR A STUDENT
	OPTION 1: FLAG THE ERROR BY PRINTING A MESSAGE
	OPTION 2: CHANGE THE POLICY
	ASSERTIONS
	EXAMPLE
	ASSERTIONS AS DEFENSIVE PROGRAMMING
	WHERE TO USE ASSERTIONS?

