
LISTS, MUTABILITY
(download slides and .py files to follow along)

6.0001 LECTURE 5

Ana Bell

16.0001 LECTURE 5

ASSIGNED READING
 Sections 5.1 – 5.5

 Sections 4.3 – 4.6

6.0001 LECTURE 1 2

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised_083117.pdf

TODAY

 Have seen variable types: int,float,bool,string

 Have introduced new compound data types
 tuples
 lists

 Today, ideas of
◦ Mutability
◦ Aliasing
◦ Cloning

6.0001 LECTURE 5 3

 Indexable ordered sequence of objects, can mix object types

 Cannot change element values or edit the tuple, immutable

 Can index into, slice, concatenate
t = ()

t = (2, "mit", 3)

TUPLES (RECAP)

6.0001 LECTURE 5 4

LISTS (RECAP)
 Indexable ordered sequence of objects, can mix object types

 Can index into, slice, concatenate
L = []

L = [2, "mit", 3]

 CAN change element values, add items, remove items,
essentially edit the list object itself
◦ It’s mutable!

6.0001 LECTURE 1 5

MUTABILITY (RECAP)

6.0001 LECTURE 1 6

 Lists are mutable!

 Assigning to an element at an index changes the value

L = [2, 1, 3]

L[1] = 5

 L is now [2, 5, 3], note this is the same object L

L

[2,1,3][2,5,3]

ITERATING OVER A LIST (RECAP)

6.0001 LECTURE 1 7

 Compute the sum of elements of a list

 Common pattern

 Notice
• List elements are indexed 0 to len(L)-1
• range(n) goes from 0 to n-1

total = 0

for i in range(len(L)):

total += L[i]

print(total)

total = 0

for i in L:

total += i

print(total)

LIVE EXERCISE

http://bit.ly/60001-18

OPERATION ON LISTS: append
 Add elements to end of list with L.append(element)

Mutates the list!
L = [2,1,3]
L.append(5)  L is now [2,1,3,5]

What is the dot?
• Lists are Python objects, everything in Python is an object
• Objects have data
• Objects have methods and functions
• Access this information by object_name.do_something()
• Will learn more about these later

6.0001 LECTURE 5 8

OPERATION ON LISTS – append
 Add element to end of list with L.append(element)

Mutates the list!
L = [2,1,3]
L.append(5)  L is now [2,1,3,5]

6.0001 LECTURE 5 9

L

[2,1,3][2,1,3,5]

OPERATION ON LISTS – append
 Add element to end of list with L.append(element)

Mutates the list!
L = [2,1,3]
L.append(5)  L is now [2,1,3,5]
L = L.append(5)

6.0001 LECTURE 5 10

L

[2,1,3][2,1,3,5]

OPERATION ON LISTS – append
 Add element to end of list with L.append(element)

Mutates the list!
L = [2,1,3]
L.append(5)  L is now [2,1,3,5]
L = L.append(5)

6.0001 LECTURE 5 11

L

[2,1,3][2,1,3,5,5]

OPERATION ON LISTS – append
 Add element to end of list with L.append(element)

Mutates the list!
L = [2,1,3]
L.append(5)  L is now [2,1,3,5]
L = L.append(5)

6.0001 LECTURE 5 12

L

[2,1,3][2,1,3,5,5]

None

TRICKY EXAMPLE 1: append
 Range returns something that behaves like a tuple (but isn’t)

 Generates the first element, and provides an iteration method
by which subsequent elements can be generated

range(5)  evaluates to tuple (0,1,2,3,4)
range(2,6) evaluates to tuple (2,3,4,5)

L = [1,2,3,4]

for i in range(len(L)):

L.append(i)

print(L)

6.0001 LECTURE 5 13

1st time: L is [1, 2, 3, 4, 0]

2nd time: L is [1, 2, 3, 4, 0, 1]

3rd time: L is [1, 2, 3, 4, 0, 1, 2]

4th time: L is [1, 2, 3, 4, 0, 1, 2, 3]

TRICKY EXAMPLE 2: append

L = [1,2,3,4]

i = 0

for e in L:

L.append(i)

i += 1

print(L)

6.0001 LECTURE 5 14

1st time: L is [1, 2, 3, 4, 0]

2nd time: L is [1, 2, 3, 4, 0, 1]

3rd time: L is [1, 2, 3, 4, 0, 1, 2]

4th time: L is [1, 2, 3, 4, 0, 1, 2, 3]
5th time: L is [1, 2, 3, 4, 0, 1, 2, 3, 4]
…

COMBINING LISTS
 Concatenation, + operator, creates a new list

Mutate list with L.extend(some_list)

L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2  L3 is [2,1,3,4,5,6]

L1.extend([0,6])  mutated L1 to [2,1,3,0,6]

15

L1 [2,1,3]

L2 [4,5,6]

L3 [2,1,3,4,5,6]

[2,1,3,0,6]

TRICKY EXAMPLE 3: combining

L = [1,2,3,4]

for e in L:

L = L + L

print(L)

6.0001 LECTURE 5 16

1st time: new L is [1, 2, 3, 4, 1, 2, 3, 4]

2nd time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

3rd time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

4th time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

OPERATION ON LISTS: REMOVE
 Delete element at a specific index with del(L[index])

 Remove element at end of list with L.pop(), returns the
removed element

 Remove a specific element with L.remove(element)
• Looks for the element and removes it
• If element occurs multiple times, removes first occurrence
• If element not in list, gives an error

L = [2,1,3,6,3,7,0] # do below in order
L.remove(2)mutates L = [1,3,6,3,7,0]
L.remove(3)mutates L = [1,6,3,7,0]
del(L[1]) mutates L = [1,3,7,0]
L.pop()  returns 0 and mutates L = [1,3,7]

6.0001 LECTURE 5 17

MUTATION AND ITERATION
http://www.pythontutor.com/ to see step-by-step

 Avoid mutating a list as you are iterating over it
def remove_dups(L1, L2):

for e in L1:
if e in L2:

L1.remove(e)

L1 = [1, 2, 3, 4]
L2 = [1, 2, 5, 6]
remove_dups(L1, L2)

 L1 is [2,3,4] not [3,4] Why?
• Python uses an internal counter to keep track of index it is in the loop
• Mutating changes the list length but Python doesn’t update the counter
• Loop never sees element 2

6.0001 LECTURE 5 18

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

http://www.pythontutor.com/

OTHER LIST
OPERATIONS

 sort() and sorted()

 reverse()

 and many more!
https://docs.python.org/3/tutorial/datastructures.html

L=[9,6,0,3]

a = sorted(L) returns sorted list, does not mutate L

a = L.sort() mutates L=[0,3,6,9]

L.reverse() mutates L=[9,6,3,0]

6.0001 LECTURE 5 19

LIVE EXERCISE

https://docs.python.org/3/tutorial/datastructures.html
http://bit.ly/60001-19

MUTATION, ALIASING, CLONING

Again, Python Tutor is your best friend
to help sort this out!
http://www.pythontutor.com/

IMPORTANT
and

TRICKY!

6.0001 LECTURE 5 20

http://www.pythontutor.com/

LISTS IN MEMORY
 Lists are mutable

 Behave differently than immutable types

 Is an object in memory

 Variable name points to object

 Using equal sign between mutable objects creates aliases

 Any variable pointing to that object is affected

 Key phrase to keep in mind when working with lists is side
effects

6.0001 LECTURE 5 21

ALIASING
 City may be known by many names

 Attributes of a city
◦ small, tech-savvy

 All nicknames point to the same city
• add new attribute to one nickname …

6.0001 LECTURE 1 22

Boston
The Hub
Beantown

Boston small tech-savvy

The Hub small tech-savvy

Beantown small tech-savvy

snowy

snowy

snowy

… all the aliases refer to the old attribute and all the new ones

ALIASES
 hot is an alias for warm – changing one changes the other!

 append() has a side effect

6.0001 LECTURE 5 23

CLONING A LIST
 Create a new list and copy every element using
chill = cool[:]

6.0001 LECTURE 5 24

SORTING LISTS
 Calling sort() mutates the list, returns nothing

 Calling sorted()
does not mutate
list, must assign
result to a variable

6.0001 LECTURE 5 25

LISTS OF LISTS
OF LISTS OF….

 Can have nested lists

 Side effects still
possible after mutation

6.0001 LECTURE 5 26

LIVE EXERCISE

http://bit.ly/60001-20

Monday
 Dictionaries

 Exceptions

 Assertions

 Debugging

6.0001 LECTURE 1 27

5 Min Break, then Quiz Time!
 Sit at a seat, not on the floor

 No aids allowed, only MITx and your IDE

 If you finish early, stay in your seat (no phones,
external websites, etc)
 Checkout password given in the last 2 mins of exam

 Exam link:

6.0001 LECTURE 1 28

	LISTS, MUTABILITY�(download slides and .py files to follow along)
	ASSIGNED READING
	TODAY
	TUPLES (RECAP)
	LISTS (RECAP)
	MUTABILITY (RECAP)
	ITERATING OVER A LIST (RECAP)
	OPERATION ON LISTS: append
	OPERATION ON LISTS – append
	OPERATION ON LISTS – append
	OPERATION ON LISTS – append
	OPERATION ON LISTS – append
	TRICKY EXAMPLE 1: append
	TRICKY EXAMPLE 2: append
	COMBINING LISTS
	TRICKY EXAMPLE 3: combining
	OPERATION ON LISTS: REMOVE
	MUTATION AND ITERATION�http://www.pythontutor.com/ to see step-by-step
	OTHER LIST �OPERATIONS
	MUTATION, ALIASING, CLONING
	LISTS IN MEMORY
	ALIASING
	ALIASES
	CLONING A LIST
	SORTING LISTS
	LISTS OF LISTS �OF LISTS OF….
	Monday
	5 Min Break, then Quiz Time!

