LISTS, MUTABILITY

(download shdes and .py files to follow along)

6.0001 LECTURE 5
Ana Bell

___]
6.0001 LECTURE 5 1

ASSIGNED READING

= Sections 5.1 -5.5

=

= Sections 4.3-4.6 L Introduction to

/ ~ Computation
¢ <and Programming

Using Python

Wit_h' ication to-'uand;'slﬁirig Data

7
second edition

Jc;hn uttag

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised 083117.pdf

6.0001 LECTURE 1 2

ODAY

= Have seen variable types: int, float, bool, string

= Have introduced new compound data types
= tuples
= |ists

= Today, ideas of
o Mutability
o Aliasing
° Cloning

6.0001 LECTURE 5 3

UPLES (RECAP)

" Indexable ordered sequence of objects, can mix object types
= Cannot change element values or edit the tuple, immutable

= Can index into, slice, concatenate

6.0001 LECTURE 5 4

LISTS (RECAP)

" Indexable ordered sequence of objects, can mix object types

= Can index into, slice, concatenate
L = []
L = [2, "mit", 3]

= CAN change element values, add items, remove items,
essentially edit the list object itself

o It’s mutable!

6.0001 LECTURE 1 5

MUTABILITY (RECAP)

= Lists are mutable!

= Assigning to an element at an index changes the value
L = [2, 1, 3]
L[1] = 5

=Lisnow [2, 5, 3], notethisisthe same object L

\

\e°*
Q

Q™

6.0001 LECTURE 1 6

¥¢ LIVE EXERCISE

ITERATING OVER A LIST (RECAP)

= Compute the sum of elements of a list e
= Common pattern g«e;:\o\‘eg\\(j;\q
Wwe &
total = 0 total = 0 \éﬁ .
for 1 1n range(len (L)) : for 1 in| L:
total += L[1] total += 1

print (total) print (total) RO
= Notice «{\Sqe‘fg«@‘\\c

* List elements are indexed 0 to len (L) -1 «o¢©

* range (n) goesfrom 0 ton-1

6.0001 LECTURE 1 7

http://bit.ly/60001-18

OPERATION ON LISTS: append

= Add elements to end of list with L. append (element)

= Mutates the list!
L = [2,1,3]
L.append (5) 2> Lisnow [2,1,3,5]

* What is the dot?
* Lists are Python objects, everything in Python is an object

* Objects have data

* Objects have methods and functions

* Access this information by object name.do something()
* Will learn more about these later

6.0001 LECTURE 5 8

OPERA

[ON ON LIS

S —append

= Add element to end of list with L.. append (element)

= Mutates the list!
L = [2,1,3]
L.append (D)

‘@

=2 Lisnow [2,1,3,5]

OPERA

[ON ON LIS

S —append

= Add element to end of list with L.. append (element)

= Mutates the list!
L = [2,1,3]

L.append (D)

L = L.append(5)

—— DD

=2 Lisnow [2,1,3,5]

OPERA

[ON ON LIS

S —append

= Add element to end of list with L.. append (element)

= Mutates the list!
L = [2,1,3]

L.append (D)

L =|L.append(5)

e

=2 Lisnow [2,1,3,5]

OPERA

[ON ON LIS

S —append

= Add element to end of list with L.. append (element)

= Mutates the list!
L = [2,1,3]

L.append (D)

L = L.append(5)

[2,1,3,5,5]

—

=2 Lisnow [2,1,3,5]

RICKY EXAMPLE 1: append

= Range returns something that behaves like a tuple (but isn’t)

= Generates the first element, and provides an iteration method
by which subsequent elements can be generated

range (5) -2 evaluatestotuple (0,1,2,3,4) e
range (2, 6) = evaluates to tuple (2, 3, 4, 5) de‘e«“‘“

L = [1,2,3,4] s

O
for 1 in |range(len (L)) ebe%\
) 1sttime: Lis[1,2, 3, 4, 0]

2" time: Lis[1, 2, 3, 4,0, 1]
print (L) 31 time: Lis[1,2,3,4,0,1,2]
4th time: Lis[1,2,3,4,0,1, 2, 3]

L.append (1)

6.0001 LECTURE 5 13

RICKY EXAMPLE 2: append

\\\
1 =20 O(\%\L%D‘\ \’&e(a‘\o
1Sl 3 e
for e 1n|L @o’&a‘e
\\°
L.append (1) 1sttime: Lis[1, 2,3, 4, 0]

2nd time: Lis [1, 2, 3, 4,0, 1]
3dtime: Lis|[1,2,3,4,0,1,2]
print (L) 4t time: Lis[1,2,3,4,0,1,2,3]
5thtime: Lis [1,2,3,4,0,1,2,3, 4]

6.0001 LECTURE 5

COMBINING LISTS

= Concatenation, + operator, creates a new list

= Mutate list with L. extend (some list)
L1 = [2,1,3]
L2 = [4,5,6]

L3 = L1 + L2 - L3is[2,1,3,4,5,6]
Ll.extend ([0, 6]) - mutatedL1to [2,1,3,0, 6]
£02.15.0,00
o (213456]

RICKY EXAMPLE 3: combining

15ttime: new Lis(1, 2, 3, 4(1, 2, 3, 4)
2nd time: new Lis(1,2,3,4,1,2,3,4

. (1,2,3,4,1,2,3,4)
\
L= [1,2,3,4,e% 31 time: newLis(l, 2,3,4,1,2,3, 4)
\\,?«'?" 1,2,3,4,1,2,3,4
for e in| Ll 1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4
L =L + L 4th time: newLisf1,2,3,4,1,2, 3,4
Ho® 1,2,3,4,1,2,3,4
e 1,23.4123, 4
eac V4 V4 V4 V4 V4 V4 V4 V4
“eCt
Con \NO\O\.«\eSv “ 2.3,4,1,2.3.
print (L) e 0 © 4, 1,2,3,4,1,2,3,4
QX% Lo A 1234123 4
\00\) L oX a‘e (.\%'\(\ 1 &y 9y Ty Ly &y 9
\’ .\(\\,\‘e (\‘ © 1) 2) 3) 4) 1) 2) 31 41
et oNe 2.3,4,1,2,3,

6.0001 LECTURE 5

OPERA

[ON ON LIS

S: REMOVE

= Delete element at a specific index with del (L[index])

= Remove element at end of list with L. pop (), returns the
removed element

" Remove a specific element with L. remove (element)
* Looks for the element and removes it
* If element occurs multiple times, removes first occurrence
* If element not in list, gives an error

L = [2,1,3,0,3,7,0]

" L.remove (2) =2 mutates L
L.remove (3) = mutates L
del (L[17]) - mutates L

_ L.pop ()

6.0001 LECTURE 5

- returns 0 and mutates L

do below in order
[1’3’6’3’710]
[1,0,3,7,0]
[1,3,7,0]

[1,3,7]

17

MUTATION AND ITERATION

http://www.pythontutor.com/ to see step-by-step

= Avoid mutating a list as you are iterating over it

def remove dups(Ll, LZ2): def remove dups(Ll, LZ2):
for e in L1: Ll copy = L1[:]
if e in L2: for e in L1 copy:
x L1l.remove (e) J if e in L2:
L1l.remove (e)
L1 = [1, 2, 3, 4] : _ 1
L2 = [1, 2, 5, 6] C\oﬂe\"s‘ai\;/ opd
remove dups (L1, L2) Ndmgg-‘de:
do€

" 1.1 is[2,3,4] not [3,4] Why?
* Python uses an internal counter to keep track of index it is in the loop
* Mutating changes the list length but Python doesn’t update the counter
* Loop never sees element 2

6.0001 LECTURE 5

http://www.pythontutor.com/

OTHER LIST ¥¢ LIVE EXERCISE
OPERATIONS

= sort () and sorted ()
" reverse ()

= and many more!
https://docs.python.org/3/tutorial/datastructures.htmi

L=[9,0,0,3]

&0(\6 “ O\)’ﬂ.

o2&
\\:m)

a = sorted (L) =2 returns sorted list, does not mutate L

al= L.sort() > mutatesIL=[0,3,6, 9]

L.reverse() =2 mutatesL=[9,6,3,0]

6.0001 LECTURE 5

https://docs.python.org/3/tutorial/datastructures.html
http://bit.ly/60001-19

MUTATION, ALIASING, CLONING

IMPORTANT

and
TRICKY!

Again, Python Tutor is your best friend
to help sort this out!

http://www.pyvthontutor.com/

http://www.pythontutor.com/

LISTS IN MEMORY

= Lists are mutable

= Behave differently than immutable types

= |s an object in memory

= Variable name points to object

= Using equal sign between mutable objects creates aliases
= Any variable pointing to that object is affected

= Key phrase to keep in mind when working with lists is side
effects

6.0001 LECTURE 5

ALIASING

= City may be known by many names

= Attributes of a city

Boston
o small, tech-savvy The Hub

Beantown

= All nicknames point to the same city
* add new attribute to one nickname ...

... all the aliases refer to the old attribute and all the new ones

6.0001 LECTURE 1

ALIASES

" hot is an alias for warm — changing one changes the other!

" append () has a side effect

a =1

b=a

print(a)
print(b)

warm = ['red’, 'yellow’,
hot = warm

hot.append('pink")
print(hot)

print(warm)

‘orange’ |

1
1
['red', 'vellow', 'orange', 'pink']
['red', 'vellow', 'orange', 'pink’]

Frames Objects
Global frame list

0
1lredll

1
"vellow"

2
"orange"

3

a |1 "pink"

b |1
warm

hot

6.0001 LECTURE 5

CLONING A LIS

= Create a new list and copy every element using
chill = cool][:]

cool = ['blue', 'green', 'grey'] [:EiUE:J ‘green’, ‘grey’, 'black’]
chill = cool[:] ['blue’, ‘green’, 'grey’]

chill.append('black’) #
print(chill) Frames Objects
print(cool) .
Global frame list
- > 0 1 2
CCIGI' "blue" 1|green1| 1|grey||
chill
\lmt
0 1 2
"blue™ "green” "grey”

6.0001 LECTURE 5

SORTING LISTS

= Calling sort () mutates the list, returns nothing

u Ca”|ng SOrted () ['orange', 'red', 'yellow']
None
does not mutate ["grey’, 'green’, 'blue’]
. . "blue' P -
list, must assign Lbluer, Tgreent, Tgrev’]
result to a variable 4
Frames Objects
warm = ['red’, 'yellow', 'orange'] | Global frame list
_ 0 1 2

SDTtedwarm = warm.sort() warm 'ﬁffF—_ﬁ%ih‘tmange" wred | "yellow"
print(warm)

sortedwarm None

cool .ﬁ_‘__ﬂhx\EiHSt
sortedcool 0 1 2

print(sortedwarm)

cool = ["grey’, "green’', 'blue'] "grey” | "green" | "blue"

sortedcool = sorted(cool)

print(cool) list

print(sortedcool) 0 1 2
"blue" | "green" | "grey"

6.0001 LECTURE 5 25

¥¢ LIVE EXERCISE

LISTS OF LISTS
OF LISTS OF....

= Can have nested lists

= Side effects still
[['vellow', 'orange'], ['red']]

possible after mutation ['red’, 'pink']
[['vellow', 'orange'], ['red', 'pink']]

4
Frames Objects

warm = ['yellow', 'orange'] Global frame 'Et :

h{]'t = [) P'E'd ' :| Warltm "}"'E'll':lw" 1rDrangE1r

brightcolors = [warm] hot

brightcolors.append(hot) brightcolors .

print(brightcolors) 0 1

hot.append('pink") "red" | "pink”

print(hot)
print(brightcolors)

6.0001 LECTURE 5

http://bit.ly/60001-20

Monday

= Dictionaries
= Exceptions
= Assertions

= Debugging

6.0001 LECTURE 1

5 Min Break, then Quiz Time!

= Sit at a seat, not on the floor
" No aids allowed, only MITx and your IDE

" [f you finish early, stay in your seat (no phones,
external websites, etc)

" Checkout password given in the last 2 mins of exam

= Exam link:

6.0001 LECTURE 1

	LISTS, MUTABILITY�(download slides and .py files to follow along)
	ASSIGNED READING
	TODAY
	TUPLES (RECAP)
	LISTS (RECAP)
	MUTABILITY (RECAP)
	ITERATING OVER A LIST (RECAP)
	OPERATION ON LISTS: append
	OPERATION ON LISTS – append
	OPERATION ON LISTS – append
	OPERATION ON LISTS – append
	OPERATION ON LISTS – append
	TRICKY EXAMPLE 1: append
	TRICKY EXAMPLE 2: append
	COMBINING LISTS
	TRICKY EXAMPLE 3: combining
	OPERATION ON LISTS: REMOVE
	MUTATION AND ITERATION�http://www.pythontutor.com/ to see step-by-step
	OTHER LIST �OPERATIONS
	MUTATION, ALIASING, CLONING
	LISTS IN MEMORY
	ALIASING
	ALIASES
	CLONING A LIST
	SORTING LISTS
	LISTS OF LISTS �OF LISTS OF….
	Monday
	5 Min Break, then Quiz Time!

