DECOMPOSITION,
ABSTRACTION,
FUNCTIONS,
RECURSION

(download slides and .py files to follow along)

6.0001 LECTURE 4
Eric Grimson




LAST TWO LECTURES

= while loops & for loops
= should know how to write both kinds

= should know when to use them
= computations characterized by “state variables”

= guess-and-check and approximation methods

= bisection method for fast algorithms when problem
has an “ordering” property

9/15/19 6.0001 LECTURE 4 p




TODAY

= structuring programs and hiding details

= functions (aka procedures)
= syntax & semantics

= specifications
" scope

" recursion

" introduction to tuples and lists
= will coverin more detail next lecture

9/15/19 6.0001 LECTURE 4 3




ASSIGN 3000 PAGES OF
s READING

e

cinss

ASSlgﬂed Readlng NEVERB{S;%;;THEMIN |

stoday:
°section4.1-4.3
* section5.1-5.5

="next lecture:
* section5.1-5.5
* section4.3-4.6

: singt,; Python

"/ With'Application to Unti;rsta/ﬁc;ing Data

secon ediyléfn
/ F 4
John V. G

See https://mitpress.mit.edu/books/introduction-computation-and-programming-
using-python-second-edition for errata sheet

9/15/19 6.0001 LECTURE 4 4




LEARNING TO PRODUCE CODE

" so far have covered basic language mechanisms

= in principle, you know all you need to know to accomplish
anythingthat can be done by computation

= after all, Turing showed that anything that is computable can
be done with just 6 primitives

YOU KNOW/NOTHING
o M\‘.\‘. X ‘
‘ \ S |

" in fact, we’ve taught you nothing about two of the most
Important concepts in programming...

9/15/19 6.0001 LECTURE 4 5




DECOMPOSITION AND
ABSTRACTION

= decomposition is about dividing a program into self-
contained parts that can be combined to solve the
problem at hand

* ideally parts can be reused by other programs

= abstractionis all about ignoring unnecessary detail

* used to separate what something does, from how it
actually does it

= the combination allows us to write complex code
while suppressing details, so that we are not
overwhelmed by the complexity

9/15/19 6.0001 LECTURE 4 6




AN EXAMPLE:
THE SMART PRONE

= 3 black box

* can be viewed in terms of its inputs and
outputs, withoutany knowledge of its internal
workings

= don’t know the details of how it works

= do know the user interface

" somehow converts a sequence of screen
touches and sounds into useful functionality

= abstraction: We don’t need to know
how something works
to know how to use it

9/15/19 6.0001 LECTURE 4 7




ABSTRACTION ENABLES
DECOMPOSITION

= 100’s of distinct parts

= designed and manufactured by 10’s
of companies
* do not communicate with each other

* may use same subparts as others

= decomposition
Each component maker has to
True for | Know how its component
hardware |interfacesto other components,
and for | b1t not how other components
software .
are implemented




OUR GOAL

Apply these concepts of abstraction
(black box) and decomposition (splitting
into self-contained, possibly nested
parts) to programming!

Output

Input  —— Black Box

nternal behavior of the code is unknown




SUPPRESS DETAILS with
ABSTRACTION

" in programming, think of a piece of code as a black box

* user cannot see details (in fact, hide tedious coding
details)

* user does not need to see details
* user does not want to see details
* coder creates details, and designsinterface

= achieve abstraction with function
* function lets us capture code within a black box

* function has specifications, captured using docstrings

* think of docstring as “contract” between creator and user:

o if user provides input that satisfies stated conditions, function will
produce output according to specs, with indicated side effects

9/15/19 6.0001 LECTURE 4 10




CREATE STRUCTURE with
DECOMPOSITION

" in programming, divide code into modules that are:
* self-contained

* usedto break up code into logical pieces

* intendedto be reusable

* used to keep code organized

* used to keep code coherent (readable and understandable)

= in this lecture, achieve decomposition with functions
" in a few lectures, achieve decomposition with classes

= decomposition relies on abstraction to enable
construction of complex modules from simpler ones

9/15/19 6.0001 LECTURE 4 11




ABSTRACTION'S VIRTUOUS
CYCLE

start with primitives (e.g., 4, 3, +, *)

= have ways to combine into more complex expressions
(e.g., (4+3)*8 + 3**(8-3))

= about to add ways to capture complex expressions
We will see how

def crazy(a, b, c): this captures a

— process in a
return (atb)*c + b**(c-b) function shortly

" now can treat functioncrazy as if it is a built-in
primitive

" repeat cycle

9/15/19 6.0001 LECTURE 4 12




FUNCTIONS

= write reusable pieces/chunks of code, called functions

= functions are not run until they are “called” or
“invoked” in a program

" compare tocodein a file that runs as soon as you load it

= function characteristics:
* has a name (thereis an exception we won’t worry about)
* has (formal) parameters (0 or more) | Names for input values

* has a docstring (optional but recommended)

c a comment delineated by “”” (triple quotes) that provides a
specification for the function

* has a body Instructions to evaluate using inputs
* returns something (typically)

Output back to invoker

13

9/15/19 6.0001 LECTURE 4




HOW TO WRITE & CALL
(INVOKE) A FUNCTION

0‘6 e xe’
\ge\\““ AN (3«\@ ((\eﬂ\‘s May have O, 1 or more | .\@,{\0(\,
defl[is eved(i): ® parameters SQec,\’\ o
— * o Separated by commas 60(,6“
. (\ mwiww
N
W% oo Input: i, a positive int
3 (S
e*‘e(\&'\o“ Returns True if i is even, otherwise False
v
N
6\\ v
\00
: e : N W\
print("inside is even") At
N o NOY ae® o
0O ! aer R%) K
return i%2 == 0 0 O 0% AN©
xel e x© \\'\d\
\o \‘O\@\ (\6 Q(O
. W e? (S
is even(3) (\af“ ((\exe

9/15/19 6.0001 LECTURE 4 14




IN THE FUNCTION BODY

def is even( i ):
Input: 1, a positive int

Returns True 1f 1 i1s even, otherwise False

mwiiw

print("inside is even'")

e if function invoked in shell,
TS, J— .
return||i%2 == 0 value returned to shell; in

X0 «
(O HO® 6(3‘0 which case value printed
NO (QS 20N . . . L
N P e * if function invoked within

\ )
el® other computation, value
return to invoker

9/15/19 6.0001 LECTURE 4 15




VARIABLE SCOPE

"new scope/frame/environment created when call a function

*formal parameter gets bound to the value of
actual input parameter when function is called

"scope is mapping of names to objects

\ )
\\CRe> )
def f(|x]): ‘\0(3(?,(0@‘ w(\‘f‘\. 00®
x = x + 1 ° > de&\(\
print('in f(x): x =', x) o et
006 e * A 7\ °
return X Dy PN (\'a‘o\ VR oY
o oF oV Zo® @ °
“\’a\“‘ .\,‘,}\\meS ,‘\)00‘\ oK S A°
y = 3 A *\\‘\@53 X \e%a\\\
j o i <& % (0 o0 ¢ 2N
z = £(]y]) o x 25° ™

9/16/19 6.0001 LECTURE 4 16




ENVIRONMENTS

= global environmentis place where user interacts with
Python interpreter

* contains bindings of variables to values from loading files
or interacting with interpreter

" invoking a function creates a new environment (or
frame)

* formal parameters bound to values passed in
* body of function evaluated with respect to this frame

* frame inherits bindings from frame in which function
called

9/15/19 6.0001 LECTURE 4 17




def

VARIABLE SCOPE

After evaluating def and
executing 15t assignment

f( x ):

x = x + 1

Global scope

Some

print('in f(x): x ="', code

return X
3




VARIABLE SCOPE

After f invoked

def £ (| x =

x = x + 1

print('in f(x): x ="',

return X

£f( x )|u—




def

VARIABLE SCOPE

f( x ):

X = X + 1|

Evaluating body of f
in f(x): x = 4 printedout

state just before return

Global scope

print('in f£(x): X

f Some
code

return X

3
f( x)

9/15/19

3

6.0001 LECTURE 4




VARIABLE SCOPE

During the return

def £( x ) :

x = x + 1

Global scope

Some

print('in f(x): x ="', code

return X

3




VARIABLE SCOPE

After executing 2"? assignment

def £( x ): Global scope

Xx = x + 1
Some

print('in f(x): x ="', code

return X




WHAT |IF THERE IS
NO return T

def is even( 1 ):

NO GOING

wiwimwn

Input: 1, a positive 1int

Does not return anything

(O
IARANA (e‘\)
o

152 == 0

= Python returnsthe value None, if no returngiven

" represents the absence of a value
= if invoked in shell, nothing is printed

" no static semantic error generated

9/15/19 6.0001 LECTURE 4 23




YOUR TURN

KEEP
CALM

AND

TAKE YOUR
TURN ALREADY

def add(x,vy):
return x+y

def mult (x,vy) :
print (x*y)

add (1, 2)
print (add (2, 3))
mult (3,4)

print (mult (4,5))

9/15/19

How many total lines of
output will show on the
console if you run this
code (as a file)?

A) O
B) 2
C)4
D)5

6.0001 LECTURE 4




return

VS.

print

= return only has meaning
inside a function

= only one return executed
inside a function

= code inside function but
after return statement not
executed

= has a value associated
with it, given to function
caller

9/15/19

= print can be used outside
functions

= can execute many print
statements inside a function

= code inside function can be
executed after a print
statement

= has a value associated with
it, outputted to the console

" print expression itself returns
None value

6.0001 LECTURE 4 26



FUNCTIONS AS PARAMETERS

" parameters can take on any type, even functions
def func af():

print ('inside func a')
def func b(y):
print ('inside func b')

return y

e
def func c(f, z): 9’6‘3«\ o
o e
print ('inside func c') wéﬁ\ g&a (S
return f£(z) OOOE% @¥$> Q&? X
print (func a()) C %QQO/ g ?Wb
\ Ch
print (5 + [func b(2)) c? Wi\o/wﬁcﬂo
N el
print (func c(func b, 3)) 653Nﬁ0

9/15/19 6.0001 LECTURE 4 27




def

def

def

-

FUNCTIONS AS PARAMETERS

Global scope

func al():

- func_a ~ Some
print ('inside func a') code
func b(y): Some

func_b
print ('inside func b') — code

Some
code

return y

func c(f, z): €

print ('inside func c') NORo
return f(z)

print|{(func a())

print (5 + func b(2))

print (func c(func b,

3))

6.0001 LECTURE 4

No bindings,
as no
parameters

func_a scope

body prints ‘inside func_a’
on console
returns None

print outputs None

9/15/19



def

def

def

print (func a())

FUNCTIONS AS PARAMETERS

Global scope func_b scope
func a():
—al func_a = S0me
print ('inside func a') code
func b(y): Some
func_b

print ('inside func b'") code

body printp ‘inside func_b’

on consolg

return y Sore
func_c code

func c (£, z):
- value of gum returned,

print ('inside func c') None print digblays 7 on console

return f£(z)

returns 2

print (b + func_b(zg)

print (func c(func b, 3))

9/15/19 6.0001 LECTURE 4



FUNCTIONS AS PARAMETERS

Global scope func_c scope body of
func_c
def func af(): -
— func_,a ~ S0me | ¥ Ul | causes print
. 4
def func b(y): Some body of
. o func_b = ode
print ('inside func b') func_b
return y Some ; causes print
to console
func_c code

def func c(f, z):

m

MNone (SUINNEN func b sccpe

.
print displays 3 on
returns 3| -5nsole

print ('inside func c')

return| £ (z)

print (func a())

print (5 + func b(2)

. Vd P
print|((func c(func b, 3)

9/15/19 6.0001 LECTURE 4



def

def

def

print (func a())
print (5 + func b(2))

print (func c(func b,

FUNCTIONS AS PARAMETERS

Global scope

func a():

—a 0 func_a ~ Some
print ('inside func a') code
func b(y): Some

func_b
print ('inside func b'") - code

Some
code

return y

func c(f, z): TIRE_:

print ('inside func c') None
return f£(z)

3))

6.0001 LECTURE 4

9/15/19

func_c scope

f func_b

func_b scope

Nothing bound to these values,
so they are garbage collected



YOUR TURN

KEEP
CALM

AND

TAKE YOUR
TURN ALREADY

def sg(func, x) :

Yy = x**2

return func(y)
def f(x):

return x**2
calc = sqg(f,2)

print (calc)

9/15/19

What does this code
print?

A) 4
B) 8
C) 16

D) nothing, it will show
an error

6.0001 LECTURE 4



FUNCTIONS CAN RETURN
-FUNCTIONS

def make prod(a): OR
def g(b):

return a*b

doubler = make prod(2)

return
J val = doubler(3)

print(val)
val = make prod(2)(3)

print(val)




SCOPE DETAILS

def make prod(a): Global scope make_prod

. scope
det g(b): make_prod

return a*b

return g

val = make prod(29713)

print(val)

Returns pointer
to g

9/15/19 6.0001 LECTURE 4 35




SCOPE DETAILS

def make prod(a):
def g(b):

return |a*b

return g

val = make prod(2) (

print(val)

9/15/19

Global scope make_prod
scope

make_prod

Some
code

code can see both b and a
values

6.0001 LECTURE 4

g scope

36



SCOPE DETAILS

def make prod(a): Global scope make_prod
def g(b): >COPS

return a*b

make_prod

Some

return g

deuvier

doubler = make prod(
val = doubler(3)

print(val)

Returns pointer
to g

9/15/19 6.0001 LECTURE 4 37




SCOPE DETAILS

def make prod(a): Global scope make_prod doubler scope
def g(b): >Ccops

return |a*b

make_prod

Some

return g

doubler = make prod
val = |doubler(3)

print(val)

doubler code can see both b Returns value
and a values

9/15/19 6.0001 LECTURE 4 38




SCOPE EXAMPLE

= inside a function, can access a variable defined outside

" inside a function, cannot modify a variable defined
outside -- can using global variables, but frowned upon

def f(y):
oS x = 1
e’éé\\(\‘\ x +=1
%61¢§° print (x)
o
©
X = b
f(x)
print (x) X
&
2 5§.é§
5 0\0\

9/15/19

$

def g(y):

’\‘O(Oe o print

<§6b print{(x |+ 1)

X

g (x) | SO

@)

6.0001 LECTURE 4

def h(y) :
X +=
x =5 @
h (x) \@(\a‘o&
print(x{Adﬁégé@
\‘0‘(0 (& @
o e‘\O
6\/0 6\0
o™ e
\00 (60
O &€ Error
S

39




SCOPE EXAMPLE

= inside a function, can access a variable defined outside

" inside a function, cannot modify a variable defined
outside -- can using global variables, but frowned upon

def f(y): def g(y) : def h(y) :
x =1 print (x) x += 1
x += 1
print (x) X = 5
X = b h(x)
X = 5 g (x) print (x)
f(x) print (x)
print (x) \ 7L“?§;\\((®\ ] °
& &®

9/15/19 6.0001 LECTURE 4 40




HARDER SCOPE EXAMPLE

IMPORTANT

and
TRICKY!

Python Tutor is your best friend to
help sort this out!

http://www.pythontutor.com/




def

SCOPE DETAILS

g (x) :
def h () :

x = 'abc'
X = x + 1
print('g: x ="'
h ()

return X

Global scope

g

Some
code




def

SCOPE DETAILS

Global scope

g(x) :
def h(): ¢ e

€= 'abc' code

X = xX + 1

print('g: x ="', Xx)
h ()

return X

g scope




SCOPE DETAILS

def g(X) . 03 ope g Sscope
def h{():

S x = 'abc'! ode *

X = xX + 1

print('g: x ="', Xx)
h ()

return X




def

SCOPE DETAILS

g (x) : Global scope

def h() : g Some
< x = 'abc' code

e

print('g: x ="', Xx)

h ()

return X




def

SCOPE DETAILS

Global scope

g(x) :
def h(): ¢ eors

é 'abc' code

X = xX + 1

print('g: x ="', Xx)
h ()

return X

g scope

returns 4



def

SCOPE DETAILS

g (x) : Global scope
def h{(): g Some

x = 'abc' code
X = x + 1

print('g: x ="',
h()

return X




DECOMPOSITION &
ABSTRACTION

= powerful together

= code can be used many times but only has to be
debugged once!

Oh bother,
Amore arguments.

Functions
are F-U-N?

= . T CTRTEN )

9/15/19 6.0001 LECTURE 4 48




Five Minute Break

© Steven Kazlowski ! Barcroft Medi

9/15/19




TOhUNDERSTAND
what recursion is
R E< l | R SlO N YOU MUST FIRST

understand recursion
Recursion is the process

) & V-
TR : recursion (n). et |
of repeating items in a (. ) l ! ] o |
. See recursion.= .
self-similar way. foyml”
| -
@

MANUFACTURER FILES FOR BANKRUPTCY
3D PRINTER COMPANY ASKS
CLIENTS NOT TO PRINT 3D PRINTERS

e et
o

No exit
condition |

program

“mise en
abyme”
Or
“Droste effect”
(1904)



ITERATIVE ALGORITHMS SO FAR

" [ooping constructs (while and for loops) lead to
iterative algorithms

" can capture computation in a set of state variables
that update on each iteration through loop




W ny
e
N o B

MULTIPLICATION —
ITERATIVE SOLUTION

= “multiply a * b” is equivalent to “add a to itself b times”

a +a + a -+ a + .. + a
= capture state by

* an iteration number (i) starts at b i M Ji Ji J

Update _ i € i-1and stop when O resudisultresultr@sultrdsult; 4a
rules * acurrent value of computation (result)starts at0

result € result + a

—GIASBERGEN

—

. Ah
. ‘\0
Adef mult iter(a, b): «\\3‘)@ e
© :
(result = 0 (200 \\)eo& (\\‘3(\6
while b > 03 e @
result += a o o \OQOK\
= 4% D
. x N
\_ b -=1 «e®
o

\_ return result

\

Code we would write | Wrap inside a
to capture iteration function

9/15/19 6.0001 LECTURE 4 52




MULTIPLICATION —
RECURSIVE SOLUTION

" recursive step a*blra+a+a+a+.+a

* think how to reduce
problemtoa
simpler/smaller v N
version of same l‘ RS
problem a * (b-1)

I
)
+
)
+
)
+
V)
+
+
)
%

" base case def mult(a, b): e

problem until reach a S
simple case that can return a 529

be solved directly clse:
° — ¥l —
whenb=1,2a"b =2 return a + mult(a, b-1)

9/15/19 6.0001 LECTURE 4 53




OH, THAT REMINDS YOU SEE, THERE’S OH YEAH? OF COURSE
ME OF THIS XKCD! ARELEVANT XKCD IBET THERE ISN'T THERE IS.

FOR ABSOLUTELY AN XKCD ABOUT \
- EVERY SITUATION. RELEVANT XKCDS. WE'RE INIT.
WHAT [S PRI )
RECURSION? ﬁ s %@%% %%ﬁ

= Algorithmically: a way to design solutions to problems
by divide-and-conquer or decrease-and-conquer

* reduce a problem to simpler versions of the same problem

= Semantically: a programming technique where a
function calls itself
* in programming, goal is to NOT have infinite recursion
o must have 1 or more base cases that are easy to solve directly

o must solve the same problem on some other input with the goal of
simplifying the larger input problem, ending at base case . A

| » Wel hair
| »Lather
e Rinse

* Repeat

9/15/19 6.0001 LECTURE 4 54




FACTORIAL

n! = n*(n-1)*(n-2)*(n-3)* ... * 1

= for what n do we know the factorial?

n=1 9 if n == : (,356
N

return 1

" how to reduce problem? Rewrite in terms of
something simpler to reach base case
n*(n-1)! > else:

9/15/19 6.0001 LECTURE 4 55




RECURSIVE deb tact(m):

if n ==

FUNCTION return 1

else:

SCOPE | return n*fact(n-1)
EXAMPI—E print(fact(4))

fact scope fact scope
(call w/ n=2) (call w/ n=1)

Global scope fact scope fact scope
(call w/ n=4) (call w/ n=3)

fact Some

9/15/19 6.0001 LECTURE 4 56




SOME OBSERVATIONS

= each recursive call to a function creates its on. €
own scope/environment \ RN

= bindings of variables in a scope are not
changed by recursive call Y,

= flow of control passes back to previous
scope once function call returns value

9/15/19 6.0001 LECTURE 4 59




ITERATION vs. RECURSION

def factorial iter(n): def factorial(n):
prod = 1 if n ==
for 1 in range(l,n+1): return 1
prod *= 1i else:
return prod return n*factorial(n-1)

" recursion may be simpler, more intuitive
" recursion may be efficient from programmer POV
" recursion may not be efficient from computer POV

Thereis a way to implementrecursive call in the Python
evaluator (called tail recursion) that is very efficient

9/15/19 6.0001 LECTURE 4 60




EVERYTHING I NEEDED |#| MAYBE
TO DO REQUIRED ME TO |z| You
DO SOMETHING ELSE | couLp
FIRST, UNTIL ITALL  |2] MAKE A
LOOPED BACK ON ITSELF || To-DO AS IF S
LIKE A MOBIUS STRIP. |E| LIsT.
] <

IT WAS THEORETICALLY
IMPOSSIBLE TO WORK
THIS WEEK.

INDUCTIVE R
REASONING S-aal B

" how dowe know that our code def mult iter(a, b):

\
O\

oy
v

=

www.dilbert.com scottadoms®sol.com

= for iterative code (loops) we while b > 0:
can reason usinga result += a
decrementing function b o= 1

" just use size of b in this case return result

"mult iterterminates
because b is initially positive,
and decreases by 1 each time
around loop; thus must
eventually becomeless than 1

= correct value is computed since
add b instances of a

9/15/19 6.0001 LECTURE 4 61




EVERYTHING I NEEDED
TO DO REQUIRED ME TO
DO SOMETHING ELSE
FIRST, UNTIL IT ALL
LOOPED BACK ON ITSELF
LIKE A MOBIUS STRIP.

IT WAS THEORETICALLY
IMPOSSIBLE TO WORK
THIS WEEK.

c./Dist.

INDUCTIVE o el
REASONING Saal B

www.dilbert.com scottadoms®sol.com

07 ©2007 Scott Adams, In

= how do we know that our def mult(a, b):

recursive code will work? if b ==

"mult calledwithb=1hasno return a

recursive call and stops clses

"mult calledwithb>1 makes return a + mult(a, b-1)

a recursive call with a smaller
version of b; so eventually will
halt when b ==

= by induction, if simpler version
of recursive call returns correct
value, then so does current call

9/15/19 6.0001 LECTURE 4 62




TOWERS OF HANOI

=" The story:
* 3 tall spikes

e stack of 64 different sized discs — start on one spike,
ordered from smallest to largest

* need to move stack to second spike (at which point
universe ends)

* only move one disc at a time, larger disc can’t cover
smaller disc

L=

By André Karwath aka Aka (Ownwork) [CC BY-SA 2.5 (http://creativecommons.org/licenses/by-sa/2.5)], via Wikimedia
Commons

9/15/19 6.0001 LECTURE 4 67




TOWERS OF HANOI

= having seen a set of examples of different sized stacks,
how would you write a program to print out the right
set of moves?

=" Think recursively!
* solve a smaller problem

* solve a basic problem
* solve a smaller problem

9/15/19 6.0001 LECTURE 4 68




def printMove(fr, to):

print( 'move from ' + str(fr) +

def Towers(n, fr, to, spare):
if n == 1:
printMove(fr, to)
else:
Towers(n-1, fr, spare, to)
Towers(1l, fr, to, spare)

Towers(n-1, spare, to, fr)

9/15/19 6.0001 LECTURE 4

to ' + str(to))

BTW, if move a disc every
millisecond, will take 5.8 X
108 years to complete




RECURSION WITH MULTIPLE
BASE CASES

= Fibonacci numbers

* Leonardo of Pisa (aka Fibonacci) modeled the following
challenge

> newborn pair of rabbits (one female, one male) are put in a pen

(¢]

rabbits mate at age of one month

(¢]

rabbits have a one month gestation period

(¢]

assume rabbits never die, that female always produces one new
pair (one male, one female) each month from its second month on.

o

how many female rabbits are there at the end of one year?

9/15/19 6.0001 LECTURE 4 70




at i

Demo courtesy of Prof. Denny Freeman and Adam Hartz

9/15/19 6.0001 LECTURE 4 71




Demo courtesy of Prof. Denny Freeman and Adam Hartz

9/15/19 6.0001 LECTURE 4 72




at i

Demo courtesy of Prof. Denny Freeman and Adam Hartz

9/15/19 6.0001 LECTURE 4 73




9/15/19

at i

")

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 4

74



at i

A T A

ar i

Demo courtesy of Prof. Denny Freeman and Adam Hartz

9/15/19 6.0001 LECTURE 4 75




9/15/19

a5 &

A T

éﬁg\ at

at i

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 4

76



9/15/19

at i

at i

Al T

Al T

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 4

77



Al in at ia
35 2%
arta atta
dh, 26 4 i
A dh S 4w

9/15/19 6.0001 LECTURE 4 78




9/15/19

ar i)

et

é%%g é%%g é%%g 2%?%
ﬁ%%ﬁ é%%g é.%%&

Y ity

Al i

ﬁ%i%

E1Y

A

@t
Al i

%&2% ﬁé&

A

&
Al T

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 4

79



: e, L SRS
i !
i _
: W
o © | K Phota
P

= T

i
i

g ;’ ; .\"‘." -
«,/V A o
T "
0% LS

A i

e A

-

L]

S

L

L

a5

9

=

=%

e A

=5

al 1), jat I

e A

[ (

e KA

e

et

g

g

o by T BT S

'

et e e

)i

e KA

(

al I, |at I Al in

T T
| ( \ES zi/ L

=

é% .

arT

Y-

At e e 9

HE

sy of Prof. Denny Freeman and Adam Hartz




FIBONACCI

After one month (call it 0) — 1 female Month | Females
After second month —still 1 female (now 0 @
pregnant) g
After third month —two females, one pregnant, O
one not O

In general, females(n) = females(n-1) + O
females(n-2)

o Every female alive at month n-2 will produce one
female in month n;

o These can be added those alive in month n-1 to
get total alive in month n

9/15/19 6.0001 LECTURE 4



FIBONACCI

= Base cases:

* Females(0)=1
* Females(1)=1

= Recursive case
* Females(n) = Females(n-1) + Females(n-2)

9/15/19

\

)

\

)

I

|

This many does
alive at timen-1

This many does
alive at time n-2;
each pregnant
next month, so
this many new
does whelped at
timen

6.0001 LECTURE 4

82



FIBONACCI RECURSIVE CODE
(MULTIPLE BASE CASES)

def fib(x):
"""assumes x an int >= 0
returns Fibonacci of x"""
1f x == 0 or x == 1:

return 1

else:

return fib(x-1) + fib(x-2)




TAKE HOME MESSAGES

= procedures (or functions) allow us to suppress detail
and capture computation within a black box

= jteration works well with methods that are
characterized by state variables

= recursionis a powerfultool that works well when
solving one problem reduces to solving a simpler
version of the same problem, plus some simple
operations

9/15/19 6.0001 LECTURE 4 85




A new data type

" Have seen scalar types: int, float,bool, string

= Want to introduce new compound data types
= tuples
= |ists

" For now, a basic introduction, next lecture will explore
further

9/15/19 6.0001 LECTURE 4 86




TUPLES

" Indexable ordered sequence ot objects, can mix object types

= Cannot change element values, immutable .

te =| () Ernpty wp'e wple with one elemen

f s (2) Etra comma means

t = (2, "mit", 3)

t[0] —> evaluates to 2

(2,"mit",3) + (5,6) - evaluates to (2, "mit", 3,5, 6)
t[1:2] —> slice tuple, evaluates to ("mit", )

t[1:3] - slice tuple, evaluates to ("mit", 3)

len (t) —> evaluates to 3

max ((3,5,0)) == evaluates5

t[1] = 4 - gives error, can’t modify object

6.0001 LECTURE 4 87

9/15/19



INDICES AND SLICING

seq = (2,'a’,4,(1,2))
index: 0 1 2 3 N

print(len(seq)) > 4 men of
print(seq[2]+1) 25 An e\ence ig at an
print(seq[3]) 2 (1,2) > Sequi indices
print(seq[-1]) 2 (1,2) ince ’3’(0
print(seq[3]1[0]) 2 1 start
print(seq[4]) - error J
N
print(seq[l]) -2 a X
print(seq[:-1]) > (2,'a',4) . 5\‘Cesett;nze
print(seq[1l:3]) 2> 'a',4 ) subsed
N
for e in seq: 2> 2 yer
print(e) 'a’ > \terat'm% o
4 sequence®
1,2

9/15/19 6.0001 LECTURE 4 88




TUPLES

= Conveniently used to swap variable values

X =y temp = X (x, y) = (y, X)
Yy = X X =Yy

X .

= Used to return more than one value from a function

def quotient and remainder (x, Vy):

g = X / / Y %6(
R {2
\\ .é\o(\
r = x % o

Y
return (g, r)

(quot, rem) quotient and remainder (4, 5)

both = quotilient and remainder (4, 5)

9/15/19 6.0001 LECTURE 4 89




CALM

YOUR TURN BT

Consider the following code: A) (‘sunny’, ‘cc’)

B) (‘sunny’, ‘ccold’)
def always sunny(tl, t2):
"tl, t2 are non-empty”

sun = ("sunny", "sun") D) nothing, it will show an error
first = tl[0] + t2[0]

return (sun[0], first)

C) (‘sunny’, ‘cloudycold’)

To what does
always sunny((‘cloudy’),
(‘cold’,)) evaluate?

9/15/19 6.0001 LECTURE 4




LISTS

" Indexable ordered sequence of objects

* Usually homogeneous (i.e., all integers, all strings, all
lists)

* Can contain mixed types (not common)

= Denoted by square brackets, [ ]

= Mutable, this means you can change element values

9/15/19 6.0001 LECTURE 4 92




INDICES AND ORDERING

a list =| []
L = [2, '"a', 4, [1,2]]
len (L) =2 evaluatesto 4

L[O] - evaluatesto 2

L[2]+1 = evaluatesto5

L[3] — evaluatesto [1, 2], another list!
L[4 — gives an error

1 = 2

L[1i-1] -2 evaluatesto 'a'sinceL[1]="a"
max ([3,5,0]) =2 evaluates5

9/15/19 6.0001 LECTURE 4 93




MUTABILITY

= Lists are mutable!

= Assigning to an element at an index changes the value
L = 1[2, 1, 3]
L[1] = 5

"Lisnow [2, 5, 3], notethisisthe same object L

9/15/19 6.0001 LECTURE 4 94




ITERATING OVER A LIST

" Compute the sum of elements of a list ,
‘.\(\%, \\5‘
= Common pattern v‘\‘e(;e O“e(d«ec‘\“
total = 0 total = 0 o™
for 1 in range(len(L)): for 1 in| L:
total += LJ[1] total += 1
print(total) print (total) «
\ n\
: O ¢
" Notice e o
. . \$2
* List elementsareindexed 0 tolen (L) -1 A\

* range (n) goesfrom0 ton-1

9/15/19 6.0001 LECTURE 4 95




CONVERT LISTS TO STRINGS
AND BACK

" Convertstringto list with 1ist (s),returnsalist with every
character from s an elementin L

" Canuse s.split (),tosplit astring on a character
parameter, splits on spaces if called without a parameter

"Use''.join (L) toturna list of charactersinto a string, can
give a character in quotes to add char between every element
s = "I<3 cs" - s is astring
list (s) 2 returns ['I','<','3'," ', '¢c',"'s"']
s.split('<") 2 returns ['I', '3 cs']
L = 1["a','b',"'c'] - Lis alist
"' .Join (L) - returns "abc"

' '.join (L) - returns "a b c"

9/15/19 6.0001 LECTURE 4 98




NEXT LECTURE

= we will pick up on more details about lists
* standard usage of lists

* why mutationis convenient

* why mutation can cause problems

9/15/19 6.0001 LECTURE 4 99




