
DECOMPOSITION,	
ABSTRACTION,	
FUNCTIONS,	
RECURSION
(download	 slides	 and	.py files	 to	follow	 along)

6.0001	 LECTURE	4

Eric	Grimson

6.0001	LECTURE	4 19/15/19

LAST	TWO	LECTURES
§ while	loops	&	for	loops
§ should	know	how	to	write	both	kinds
§ should	know	when	to	use	them
§ computations	characterized	 by	“state	variables”

§ guess-and-check	and	approximation	methods
§ bisection	method	for	fast	algorithms	when	problem	
has	an	“ordering”	property

6.0001	LECTURE	4 29/15/19

TODAY
§ structuring	programs	and	hiding	details
§ functions	(aka	procedures)
§ syntax	&	semantics
§ specifications
§ scope

§ recursion
§ introduction	to	tuples	and	lists
§will	cover	in	more	detail	next	lecture

6.0001	LECTURE	4 39/15/19

Assigned	Reading
§today:

• section	4.1	– 4.3
• section	5.1	– 5.5	

§next	lecture:
• section	5.1	– 5.5
• section	4.3	– 4.6

6.0001	LECTURE	4 4

See	https://mitpress.mit.edu/books/introduction-computation-and-programming-
using-python-second-edition for	errata	sheet

9/15/19

LEARNING	TO	PRODUCE	CODE
§ so	far	have covered	basic	language	mechanisms
§ in	principle,	you	know	all	you	need	to	know	to	accomplish	
anything	that	can	be	done	by	computation
§ after	all,	Turing	showed	 that	anything	 that	is	computable	 can	
be	done	with	just	6	primitives

§ in	fact,	we’ve	taught	you	nothing	about	two	of	the		most	
important	concepts	in	programming…

6.0001	LECTURE	4 59/15/19

DECOMPOSITION	AND	
ABSTRACTION
§ decomposition is	about	dividing	a	program	into	self-
contained	parts	that	can	be	combined	to	solve	the	
problem	at	hand
• ideally	parts	can	be	reused	by	other	programs

§ abstraction is	all	about	ignoring	unnecessary	detail
• used	to	separate	what something	does,	from how it	
actually	does	it

§ the	combination	allows	us	to	write	complex	code	
while	suppressing	details,	so	that	we	are	not	
overwhelmed	by	the	complexity

6.0001	LECTURE	4 69/15/19

AN	EXAMPLE:
THE	SMART	PHONE
§ a	black	box

• can	be	viewed	in	terms	of	its	inputs	and	
outputs,	without	any	knowledge	of	its	internal	
workings

§ don’t know	the	details	of	how	it	works
§ do know	the	user	interface
§ somehow	converts	a	sequence	of	screen	
touches	and	sounds	into	useful	functionality
§ abstraction:

6.0001	LECTURE	4 7

We	don’t	need	to	know	
how	something	works
to	know	how	to	use	it

299 × 600

9/15/19

ABSTRACTION	ENABLES	
DECOMPOSITION
§ 100’s	of	distinct	parts
§ designed	and	manufactured	by	10’s	
of	companies
• do	not	communicate	with	each	other
• may	use	same	subparts	as	others

§ decomposition	

6.0001	LECTURE	4 8

Each	component	maker	has	to	
know	how	its	component	
interfaces	to	other	components,	
but	not	how	other	components	
are	implemented

True	for	
hardware	
and	for	
software

9/15/19

OUR	GOAL
Apply	these	concepts	of	abstraction	
(black	box)	and	decomposition	(splitting	
into	self-contained,	possibly	nested	
parts)	to	programming!

6.0001	LECTURE	4 99/15/19

SUPPRESS	DETAILS	with	
ABSTRACTION

6.0001	LECTURE	4 10

§ in	programming,	think	of	a	piece	of	code	as	a	black	box
• user	cannot see	details	(in	fact,	hide	tedious	coding	
details)

• user	does	not	need to	see	details
• user	does	not	want to	see	details
• coder	creates	details,	and	designs	interface

§ achieve	abstraction	with	function
• function	lets	us	capture	code	within	a	black	box
• function	has	specifications,	captured	using	docstrings
• think	of	docstring as	“contract”	between	creator	and	user:
◦ if	user	provides	 input that	satisfies	 stated	conditions,	 function	will	
produce	output according	to	specs,	with	indicated	side	effects

9/15/19

CREATE	STRUCTURE	with	
DECOMPOSITION

6.0001	LECTURE	4 11

§ in	programming,	divide	code	into	modules	that	are:
• self-contained
• used	to	break	up code	into	logical	pieces
• intended	to	be	reusable
• used	to	keep	code	organized
• used	to	keep	code	coherent	(readable	and	understandable)

§ in	this	lecture,	achieve	decomposition	with	functions
§ in	a	few	lectures,	achieve	decomposition	with	classes
§ decomposition	relies	on	abstraction	to	enable	
construction	of	complex	modules	from	simpler	ones

9/15/19

ABSTRACTION’S	VIRTUOUS	
CYCLE
§ start	with	primitives	(e.g.,	4,	3,	+,	*)
§ have	ways	to	combine	into	more	complex	expressions	
(e.g.,	(4+3)*8	+	3**(8-3))
§ about	to	add	ways	to	capture	complex	expressions
def crazy(a, b, c):

return (a+b)*c + b**(c-b)

§ now	can	treat	function	crazy as	if	it	is	a	built-in	
primitive	
§ repeat	cycle

6.0001	LECTURE	4 12

We	will	see	how	
this	captures	a	
process	 in	a	
function	shortly

9/15/19

FUNCTIONS
§ write	reusable	pieces/chunks	of	code,	called	functions
§ functions	are	not	run	until	they	are	“called”	or	
“invoked”	in	a	program
§compare	to	code	in	a	file	that	runs	as	soon	as	you	load	it

§ function	characteristics:
• has	a	name	(there	is	an	exception	we	won’t	worry	about)
• has	(formal)	parameters (0	or	more)
• has	a	docstring (optional	but	recommended)
◦ a	comment	delineated	 by	“””	(triple	quotes)	that	provides	 a	
specification	for	the	function

• has	a	body
• returns something	(typically)

6.0001	LECTURE	4 13

Names	for	input	values

Output	back	to	invoker

Instructions	to	evaluate	using	inputs	

9/15/19

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("inside is_even")

return i%2 == 0

is_even(3)

HOW	TO	WRITE	&	CALL	
(INVOKE)	A	FUNCTION

6.0001	LECTURE	4 14

May	have	0,	1	or	more	
parameters
Separated	by	commas

9/15/19

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("inside is_even")

return i%2 == 0

IN	THE	FUNCTION	BODY

6.0001	LECTURE	4 15

• if	function	 invoked	in	shell,	
value	returned	to	shell;	 in	
which	case	value	printed

• if	function	 invoked	within	
other	computation,	 value	
return	to	invoker

9/15/19

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

§new	scope/frame/environment created	when	call	a	function

§formal	parameter	gets	bound	to	the	value	of	
actual	input	parameter	when	function	is	called	

§scope is	mapping	of	names	to	objects

VARIABLE	SCOPE

6.0001	LECTURE	4 169/16/19

y

y

ENVIRONMENTS
§ global	environment	is	place	where	user	interacts	with	
Python	interpreter
• contains	bindings	of	variables	to	values	from	loading	files	
or	interacting	with	interpreter

§ invoking	a	function	creates	a	new	environment	(or	
frame)
• formal	parameters	bound	to	values	passed	in
• body	of	function	evaluated	with	respect	to	this	frame
• frame	inherits	bindings	from	frame	in	which	function	
called

6.0001	LECTURE	4 179/15/19

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE	SCOPE

6.0001	LECTURE	4 18

Global	scope

f

x

Some	
code

3

After	evaluating	def and	
executing	1st assignment

9/15/19

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE	SCOPE

6.0001	LECTURE	4 19

Global	scope

f

x

Some	
code

f	scope

x 3

3

After	f	invoked

9/15/19

VARIABLE	SCOPE

6.0001	LECTURE	4 20

Global	scope

f

x

Some	
code

3

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

Evaluating	body	of	f

in f(x): x = 4 printed	out

state	just	before	return

f	scope

x 34

9/15/19

VARIABLE	SCOPE

6.0001	LECTURE	4 21

Global	scope

f

x

Some	
code

3

f	scope

x 4

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

returns	4

During	the	return

9/15/19

VARIABLE	SCOPE

6.0001	LECTURE	4 22

Global	scope

f

x

z

Some	
code

3

4

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

After	executing	2nd assignment

9/15/19

WHAT	IF	THERE	IS
NO	return
def is_even(i):

"""

Input: i, a positive int

Does not return anything

"""

i%2 == 0

§ Python	returns	the	value	None,	if	no	returngiven
§ represents	the	absence	of	a	value
§ if	invoked	 in	shell,	 nothing	is	printed

§ no	static	semantic	error	generated

6.0001	LECTURE	4 239/15/19

YOUR	TURN
def add(x,y):

return x+y

def mult(x,y):

print(x*y)

add(1,2)

print(add(2,3))

mult(3,4)

print(mult(4,5))

How	many	total	lines	of	
output	will	show	on	the	
console	if	you	run	this	
code	(as	a	file)?

A)	0
B)	2
C)	4
D)	5

6.0001	LECTURE	4 249/15/19

return vs.								print
§ return	only	has	meaning	
inside a	function
§ only	one return	executed	
inside	a	function
§ code	inside	function	but	
after	return	statement	not	
executed
§ has	a	value	associated	
with	it,	given	to	function	
caller

§ print	can	be	used	outside
functions
§ can	execute	many print	
statements	inside	a	function
§ code	inside	function	can	be	
executed	after	a	print	
statement
§ has	a	value	associated	with	
it,	outputted to	the	console
§ print	expression	itself	returns	
None value

6.0001	LECTURE	4 269/15/19

FUNCTIONS	AS	PARAMETERS
§ parameters	can	take	on	any	type,	even	functions

6.0001	LECTURE	4 27

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

9/15/19

FUNCTIONS	AS	PARAMETERS

6.0001	LECTURE	4 28

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Global	scope

func_a

func_b

func_c

Some	
code

Some	
code

Some	
code

func_a scope

body	prints	‘inside	 func_a’	
on	console
returns	None

None

print	outputs	None

No	bindings,	
as	no	
parameters

9/15/19

Global	scope

func_a

func_b

func_c

FUNCTIONS	AS	PARAMETERS

6.0001	LECTURE	4 29

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Some	
code

Some	
code

Some	
code

func_b scope

y	 2

returns	2

None

7

body	prints	‘inside	 func_b’	
on	console
value	of	sum	returned,
print	displays	7	on	console

9/15/19

Global	scope

func_a

func_b

func_c

FUNCTIONS	AS	PARAMETERS

30

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Some	
code

Some	
code

Some	
code

func_c scope

f

z	

func_b

func_b scope

y

returns	3

returns	3

None

7

6.0001	LECTURE	4

3

3

3

3

body	of	
func_c
causes	print	
to	console

body	of	
func_b
causes	print	
to	console

print	displays	3	on	
console

9/15/19

Global	scope

func_a

func_b

func_c

FUNCTIONS	AS	PARAMETERS

31

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Some	
code

Some	
code

Some	
code

func_c scope

f

z	

func_b

func_b scope

y

None

7

6.0001	LECTURE	4

3

3

3

3

9/15/19

Nothing	bound	to	these	 values,	
so	they	are	garbage	collected

YOUR	TURN
def sq(func,x):

y = x**2

return func(y)

def f(x):

return x**2

calc = sq(f,2)

print(calc)

What	does	this	code	
print?

A)	4
B)	8
C)	16
D)	nothing,	it	will	show	
an	error

6.0001	LECTURE	4 329/15/19

FUNCTIONS	CAN	RETURN	
FUNCTIONS
def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)

OR

doubler = make_prod(2)

val = doubler(3)

print(val)

6.0001	LECTURE	4 349/15/19

SCOPE	DETAILS
make_prod
scope

a

Some	
code

2

6.0001	LECTURE	4 35

Global	scope

make_prod Some	
code

def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)

Returns	pointer	
to		g

g

9/15/19

SCOPE	DETAILS
make_prod
scope

a

g Some	
code

2

6.0001	LECTURE	4 36

Global	scope

make_prod Some	
code

def make_prod(a):

def g(b):

return a*b

return g

val = make_prod(2)(3)

print(val)

g scope

b
3

6

6val

9/15/19

code	can	see	both	b	and	a	
values

SCOPE	DETAILS
make_prod
scope

a

Some	
code

2

6.0001	LECTURE	4 37

Global	scope

make_prod Some	
code

def make_prod(a):

def g(b):

return a*b

return g

doubler = make_prod(2)

val = doubler(3)

print(val)

Returns	pointer	
to		g

gdoubler

9/15/19

SCOPE	DETAILS
make_prod
scope

a

g Some	
code

2

6.0001	LECTURE	4 38

Global	scope

make_prod

doubler

val

Some	
code

def make_prod(a):

def g(b):

return a*b

return g

doubler = make_prod(2)

val = doubler(3)

print(val)

doubler scope

b 3

doubler code	can	see	both	b	
and	a	values

6

Returns	value

6

9/15/19

§ inside	a	function,	can	access	a	variable	defined	outside
§ inside	a	function,	cannot	modify	a	variable	defined	
outside	-- can	using	global	variables,	but	frowned	upon

SCOPE	EXAMPLE

6.0001	LECTURE	4 39

def g(y):
print(x)
print(x + 1)

x = 5
g(x)
print(x)

def h(y):
x += 1

x = 5
h(x)
print(x)

def f(y):
x = 1
x += 1
print(x)

x = 5
f(x)
print(x)

2
5

5
6
5

Error

9/15/19

§ inside	a	function,	can	access	a	variable	defined	outside
§ inside	a	function,	cannot	modify	a	variable	defined	
outside	-- can	using	global	variables,	but	frowned	upon

SCOPE	EXAMPLE

6.0001	LECTURE	4 40

def g(y):
print(x)

x = 5
g(x)
print(x)

def h(y):
x += 1

x = 5
h(x)
print(x)

def f(y):
x = 1
x += 1
print(x)

x = 5
f(x)
print(x)

9/15/19

HARDER	SCOPE	EXAMPLE

Python	Tutor	is	your	best	friend	to	
help	sort	this	out!
http://www.pythontutor.com/

IMPORTANT	
and

TRICKY!

6.0001	LECTURE	4 419/15/19

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

SCOPE	DETAILS
Global	scope

g Some	
code

3

6.0001	LECTURE	4 42

x

9/15/19

SCOPE	DETAILS
g scope

x	

h Some	
code

3

6.0001	LECTURE	4 43

Global	scope

g

x

Some	
code

3

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

9/15/19

SCOPE	DETAILS
g scope

x	

h Some	
code

34

6.0001	LECTURE	4 44

Global	scope

g

x

Some	
code

3

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

9/15/19

SCOPE	DETAILS
Global	scope

g

x

Some	
code

3

g scope

x	

h Some	
code

3

h scope

x
‘abc’4

6.0001	LECTURE	4 45

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

returns	None

9/15/19

SCOPE	DETAILS
g	scope

x	

h Some	
code

4

6.0001	LECTURE	4 46

Global	scope

g

x

Some	
code

3

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)
returns	4

9/15/19

SCOPE	DETAILS

6.0001	LECTURE	4 47

Global	scope

g

x

z

Some	
code

3

4

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

9/15/19

DECOMPOSITION	&	
ABSTRACTION
§ powerful	together
§ code	can	be	used	many	times	but	only	has	to	be	
debugged	once!

6.0001	LECTURE	4 489/15/19

Five	Minute	Break

499/15/19

RECURSION

6.0001	LECTURE	4 50

Recursion	is	the	process	
of	repeating	items	in	a	
self-similar	way.	

“mise en	
abyme”

Or
“Droste effect”

(1904)

9/15/19

ITERATIVE	ALGORITHMS	SO	FAR
§ looping	constructs	(while	and	for	loops)	lead	to	
iterative algorithms
§ can	capture	computation	in	a	set	of	state	variables
that	update	on	each	iteration	through	loop

6.0001	LECTURE	4 519/15/19

MULTIPLICATION	–
ITERATIVE	SOLUTION
§ “multiply	a *	b”	is	equivalent	 to	“add	a to	itself	b times”
§ capture	state by	

• an	iteration number	 (i)	starts	at	b
i ß i-1 and	stop	when	0

• a	current	value of computation (result)	starts	at	0
result ß result + a

def mult_iter(a, b):
result = 0
while b > 0:

result += a
b -= 1

return result

6.0001	LECTURE	4 52

a + a + a + a + … + a

i
result:	0

i
result:	a

i
result:	2a

i
result:	3a

i
result:	4aUpdate	

rules

9/15/19

Code	we	would	write	
to	capture	iteration

Wrap	inside	a	
function

a*b = a + a + a + a + … + a

= a + a + a + a + … + a

= a + a * (b-1)

MULTIPLICATION	–
RECURSIVE	SOLUTION
§ recursive	step

• think	how	to	reduce	
problem	to	a	
simpler/smaller	
version	of	same	
problem	

§ base	case
• keep	reducing	
problem	until	reach	a	
simple	case	that	can	
be	solved	directly

• when	b	=	1,	a*b	=	a

6.0001	LECTURE	4 53

def mult(a, b):

if b == 1:

return a

else:

return a + mult(a, b-1)

9/15/19

WHAT	IS
RECURSION?
§ Algorithmically:	a	way	to	design	solutions	to	problems	
by	divide-and-conquer	or decrease-and-conquer
• reduce	a	problem	to	simpler	versions	of	the	same	problem	

§ Semantically:	a	programming	technique	where	a	
function	calls	itself
• in	programming,	goal	is	to	NOT	have	infinite	recursion
◦ must	have	1	or	more	base	cases	that	are	easy	to	solve	directly
◦ must	solve	 the	same	problem	on	some	other	 input	with	the	goal	of	
simplifying	the	larger	input	problem,	ending	at	base	case

6.0001	LECTURE	4 549/15/19

FACTORIAL
n! = n*(n-1)*(n-2)*(n-3)* … * 1

§ for	what	n do	we	know	the	factorial?
n	=	1 à if n == 1:

return 1

§ how	to	reduce	problem?	Rewrite	in	terms	of	
something	simpler	to	reach	base	case
n*(n-1)! à else:

return n*factorial(n-1)

6.0001	LECTURE	4 559/15/19

RECURSIVE	
FUNCTION	
SCOPE	
EXAMPLE

Global	scope

fact Some	
code

fact	scope
(call	w/	n=4)

n
4

fact	scope
(call	w/	n=3)

n
3

fact	scope
(call	w/	n=2)

n
2

fact	scope
(call	w/	n=1)

n
1

6.0001	LECTURE	4 56

def fact(n):
if n == 1:

return 1
else:

return n*fact(n-1)

print(fact(4))

9/15/19

SOME	OBSERVATIONS

§ each	recursive	call	to	a	function	creates	its	
own	scope/environment
§ bindings	of	variables	in	a	scope	are	not	
changed	by	recursive	call
§ flow	of	control	passes	back	to	previous	
scope	once	function	call	returns	value

6.0001	LECTURE	4 599/15/19

ITERATION vs.	 RECURSION	
def factorial_iter(n):

prod = 1

for i in range(1,n+1):

prod *= i

return prod

def factorial(n):

if n == 1:

return 1

else:

return n*factorial(n-1)

6.0001	LECTURE	4 60

§ recursion	may	be	simpler,	more	intuitive	
§ recursion	may	be	efficient	from	programmer	POV
§ recursion	may	not	be	efficient	from	computer	POV

9/15/19

There	is	a	way	to	implement	recursive	call	in	the	Python	
evaluator	(called	tail	recursion)	that	is	very	efficient

INDUCTIVE
REASONING

§ how	do	we	know	that	our	code	
will	work?
§ for	iterative	code	(loops)	we	
can	reason	using	a	
decrementing	function
§ just	use	size	of	b	in	this	case
§ mult_iter terminates	
because	b	is	initially	positive,	
and	decreases	by	1	each	time	
around	loop;	thus	must	
eventually	become	less	than	1
§ correct	value	is	computed	since	
add	b	instances	of	a

6.0001	LECTURE	4 61

def mult_iter(a, b):
result = 0
while b > 0:

result += a
b -= 1

return result

9/15/19

INDUCTIVE
REASONING

§ how	do	we	know	that	our	
recursive	code	will	work?

§mult called	with	b	=	1	has	no	
recursive	call	and	stops

§ mult called	with	b	>	1	makes	
a	recursive	call	with	a	smaller	
version	of	b;	so	eventually	will	
halt	when	b	==	1

§ by	induction,	if	simpler	version	
of	recursive	call	returns	correct	
value,	then	so	does	current	call

6.0001	LECTURE	4 62

def mult(a, b):

if b == 1:

return a

else:

return a + mult(a, b-1)

9/15/19

TOWERS	OF	HANOI
§ The	story:

• 3	tall	spikes
• stack	of	64	different	sized	discs	– start	on	one	spike,	
ordered	from	smallest	to	largest

• need	to	move	stack	to	second	spike	(at	which	point	
universe	ends)

• only	move	one	disc	at	a	time,	larger	disc	can’t	cover	
smaller	disc

6.0001	LECTURE	4 67

By	André	Karwath aka	Aka	(Own	work)	[CC	BY-SA	2.5	(http://creativecommons.org/licenses/by-sa/2.5)],	via	Wikimedia	
Commons

9/15/19

TOWERS	OF	HANOI
§ having	seen	a	set	of	examples	of	different	sized	stacks,	
how	would	you	write	a	program	to	print	out	the	right	
set	of	moves?
§ Think	recursively!

• solve	a	smaller	problem
• solve	a	basic	problem
• solve	a	smaller	problem

6.0001	LECTURE	4 689/15/19

6.0001	LECTURE	4 69

def printMove(fr, to):

print('move from ' + str(fr) + ' to ' + str(to))

def Towers(n, fr, to, spare):

if n == 1:

printMove(fr, to)

else:

Towers(n-1, fr, spare, to)

Towers(1, fr, to, spare)

Towers(n-1, spare, to, fr)

BTW,	if	move	a	disc	every	
millisecond,	 will	take	5.8	X	
108 years	to	complete

9/15/19

RECURSION	WITH	MULTIPLE	
BASE	CASES
§ Fibonacci	numbers

• Leonardo	of	Pisa	(aka	Fibonacci)	modeled	the	following	
challenge
◦ newborn	pair	of	rabbits	 (one	female,	 one	male)	are	put	in	a	pen
◦ rabbits	mate	at	age	of	one	month
◦ rabbits	have	a	one	month	gestation	period
◦ assume	rabbits	never	die,	that	female	 always	produces	 one	new	
pair	(one	male,	one	female)	 each	month	from	its	second	month	on.

◦ how	many	female	 rabbits	are	there	at	the	end	of	one	year?

6.0001	LECTURE	4 709/15/19

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz

6.0001	LECTURE	4 719/15/19

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz

6.0001	LECTURE	4 729/15/19

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz

6.0001	LECTURE	4 739/15/19

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz

6.0001	LECTURE	4 749/15/19

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz

6.0001	LECTURE	4 759/15/19

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz

6.0001	LECTURE	4 769/15/19

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz

6.0001	LECTURE	4 779/15/19

6.0001	LECTURE	4 789/15/19

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz

6.0001	LECTURE	4 799/15/19

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz

6.0001	LECTURE	4 809/15/19

FIBONACCI
After	one	month	(call	it	0)	– 1	female

After	second	month	– still	1	female	(now	
pregnant)

After	third	month	– two	females,	one	pregnant,	
one	not

In	general,	females(n)	=	females(n-1)	+	
females(n-2)
◦ Every	 female	 alive	 at	month	n-2	will	produce	one	
female	 in	month	n;

◦ These	 can	be	added	those	alive	in	month	n-1	to	
get	total	alive	 in	month	n

Month Females

0 1

1 1

2 2

3 3

4 5

5 8

6 13

6.0001	LECTURE	4 819/15/19

FIBONACCI
§ Base	cases:

• Females(0)	=	1
• Females(1)	=	1

§ Recursive	case
• Females(n)	=	Females(n-1)	+	Females(n-2)

6.0001	LECTURE	4 829/15/19

This	many	does	
alive	at	time	n-2;	
each	pregnant	
next	month,	so	
this	many	new	
does	whelped	at	
time	n

This	many	does	
alive	at	time	n-1

FIBONACCI	RECURSIVE	CODE	
(MULTIPLE	BASE	CASES)
def fib(x):

"""assumes x an int >= 0

returns Fibonacci of x""”

if x == 0 or x == 1:

return 1

else:

return fib(x-1) + fib(x-2)

6.0001	LECTURE	4 839/15/19

TAKE	HOME	MESSAGES
§ procedures	(or	functions)	allow	us	to	suppress	detail	
and	capture	computation	within	a	black	box
§ iteration	works	well	with	methods	that	are	
characterized	by	state	variables
§ recursion	is	a	powerful	tool	that	works	well	when	
solving	one	problem	reduces	to	solving	a	simpler	
version	of	the	same	problem,	plus	some	simple	
operations

6.0001	LECTURE	4 859/15/19

A	new	data	type
§ Have	seen	scalar	types:	int,float,bool,string

§Want	to	introduce	new	compound	data	types
§ tuples
§ lists

§ For	now,	a	basic	introduction,	next	lecture	will	explore	
further

6.0001	LECTURE	4 869/15/19

§ Indexable ordered	sequence	of	objects,	can	mix	object	types
§ Cannot	change	element	values,	immutable

te = ()

ts = (2,)

t = (2, "mit", 3)

t[0] à evaluates	 to	2
(2,"mit",3) + (5,6) à evaluates	 to (2,"mit",3,5,6)
t[1:2] à slice	tuple,	evaluates	 to	("mit",)
t[1:3] à slice	tuple,	evaluates	 to	("mit",3)
len(t) à evaluates	 to	3
max((3,5,0)) à evaluates	5

t[1] = 4 à gives	error,	 can’t	modify	object

TUPLES

6.0001	LECTURE	4 879/15/19

INDICES	AND	SLICING
seq = (2,'a',4,(1,2))

print(len(seq)) à 4
print(seq[2]+1) à 5
print(seq[3]) à (1,2)
print(seq[-1]) à (1,2)
print(seq[3][0]) à 1
print(seq[4]) à error

print(seq[1]) à a
print(seq[:-1]) à (2,'a',4)
print(seq[1:3]) à 'a',4

for e in seq: à 2
print(e) 'a'

4
(1,2)

6.0001	LECTURE	4 88

index:				0							1						2									3

9/15/19

TUPLES
§ Conveniently	used	to	swap variable	values

x = y temp = x (x, y) = (y, x)

y = x x = y

y = temp

§ Used	to	return	more	than	one	value	from	a	function
def quotient_and_remainder(x, y):

q = x // y

r = x % y

return (q, r)

(quot, rem) = quotient_and_remainder(4,5)

6.0001	LECTURE	4 899/15/19

both = quotient_and_remainder(4,5)

YOUR	TURN
Consider	 the	following	code:

def always_sunny(t1, t2):
"t1, t2 are non-empty”
sun = ("sunny", "sun")
first = t1[0] + t2[0]
return (sun[0], first)

To	what	does	
always_sunny((‘cloudy’),
(‘cold’,)) evaluate?

A)	(‘sunny’, ‘cc’)

B)	(‘sunny’, ‘ccold’)

C)	(‘sunny’, ‘cloudycold’)

D)	nothing,	 it	will	show	an	error

9/15/19 6.0001	LECTURE	4 90

LISTS
§ Indexable ordered	sequence	of	objects

• Usually	homogeneous	(i.e.,	all	integers,	all	strings,	all	
lists)

• Can	contain	mixed	types	(not	common)

§ Denoted	by	square brackets,	[]

§Mutable,	this	means	you	can	change	element	values

6.0001	LECTURE	4 929/15/19

INDICES	AND	ORDERING
a_list = []

L = [2, 'a', 4, [1,2]]

len(L) à evaluates	to	4
L[0] à evaluates	to	2
L[2]+1 à evaluates	to	5
L[3] à evaluates	to	[1,2],	another	list!
L[4] à gives	an	error	
i = 2
L[i-1] à evaluates	to	'a' since	L[1]='a'
max([3,5,0]) à evaluates	5	

6.0001	LECTURE	4 939/15/19

MUTABILITY

6.0001	LECTURE	4 94

§ Lists	are	mutable!
§ Assigning	to	an	element	at	an	index	changes the	value

L = [2, 1, 3]

L[1] = 5

§ L is	now	[2, 5, 3],	note	this	is	the	same	object	L

L

[2,1,3][2,5,3]

9/15/19

ITERATING	OVER	A	LIST

6.0001	LECTURE	4 95

§ Compute	the	sum	of	elements	of	a	list
§ Common	pattern

§ Notice
• List	elements	are	indexed	0 to	len(L)-1
• range(n) goes	from	0 to	n-1

total = 0

for i in range(len(L)):

total += L[i]

print(total)

total = 0

for i in L:

total += i

print(total)

9/15/19

CONVERT	LISTS	TO	STRINGS	
AND	BACK
§ Convert	string	to	list	with	list(s),	returns	a	list	with	every	
character	from	s an	element	in	L

§ Can	use	s.split(),	to	split	a	string	on	a	character	
parameter,	splits	on	spaces	if	called	without	a	parameter

§ Use	''.join(L) to	turn	a	list	of	characters	into	a	string,	can	
give	a	character	in	quotes	to	add	char	between	every	element

6.0001	LECTURE	4 98

s = "I<3 cs" à s is	a	string
list(s) à returns	['I','<','3',' ','c','s']
s.split('<') à returns	['I', '3 cs']
L = ['a','b','c'] à L is	a	list
''.join(L) à returns	"abc"
'_'.join(L) à returns	"a_b_c"

9/15/19

NEXT	LECTURE
§ we	will	pick	up	on	more	details	about	lists

• standard	usage	of	lists
• why	mutation	is	convenient
• why	mutation	can	cause	problems

9/15/19 6.0001	LECTURE	4 99

