Graph-theoretic Models

(download slides and .py files from Stellar to follow along)

John Guttag

MIT Department of Electrical Engineering and
Computer Science




Last Week’s Brain Twister

def getSomething(n):
return [p for p in range(2, n+1)\
if @ not in [p%d for d in range(2, p)l]

print([x for x in range(101) if x not in\

({i+1:getSomething(101) [i]\
for i in range(len(getSomething(101)))}).values()])
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Last Week’s Brain Twister

def getSomething(n):
return [p for p in range(2, n+1)\
if @ not in [p%d for d in range(2, p)1]

print([x for x in range(101) if x not in\
({i+1:getSomething(101) [i]\
for i in range(len(getSomething(101)))}).values()]1)

def getPrimesToN(n):
def isPrime(p):
remainders = []
for d in range(2, p):
remainders.append(p%d)
return @ not in remainders
primes = []
for p in range(2, n+l):
if isPrime(p):
primes.append(p)
return primes

D = {}
for i in range(len(getPrimesToN(100))):
D[i+1] = getPrimesToN(100) [i]
notP = {x for x in range(101) if x not in D.values()}
print(notP)
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Relevant Reading

=Today
o Section 12.2

¢ Introduction to

=Wednesday o tati
o Chapter 15.1-15.4.1, 15.5 a,:?sri:r;?ming

“Using Python

With Application to Understanding Data

/ X :/ : g

'.‘/' >

second edition
John \7téag
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A Reminder

= First micro-quiz in lecture on Wednesday

= Will start around 3:50
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Computational Models

= Programs that help us understand the world and solve
practical problems

= Saw how we could map the informal problem of
choosing what to eat into an optimization problem,
and how we could design a program to solve it

> Saw how a decision tree can help find a good solution to
an optimization problem

= Now want to look at a class of models called graphs
> Nice way to formulate many problems
o Often lead to nice optimization problems
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What is a Graph?
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What is a Graph?

= Set of nodes (vertices)
> Might have properties associated with them

= Set of edges (arcs) each connecting a pair of nodes
o Undirected (graph)
o Directed (digraph)
o Source (parent) and destination (child) nodes
> Unweighted or weighted
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What is a Graph?

= Set of nodes (vertices)
> Might have properties associated with them

= Set of edges (arcs) each connecting a pair of nodes
o Undirected (graph)
o Directed (digraph)
o Source (parent) and destination (child) nodes
> Unweighted or weighted
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Trees: An Important Special Case

= A special kind of directed graph in which any pair of
nodes is connected by a single path

o Recall the search trees we used to solve knapsack
problem
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Why Graphs?

= To capture relationships among entities
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Why Graphs Are So Useful

= Not only do graphs capture relationships in connected
networks of items, they provide convenient ways to
formulate questions about those relationships

* Find sequences of links between
elements —is there a path from Ato B

* Finding least expensive path between
elements (aka shortest path problem)

* Partitioning graph into subgraphs with
minimal connections between them
(aka graph partition problem or graph
cligue problem)

* Finding the most efficient way to
separate sets of connected elements

(aka the min-cut/max-flow problem)

6.0002 LECTURE 3



Example: Modeling Social Networks

= Understanding a social ANATOMY
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This graphic appeared in Fast Comparny and was created by Dave Gray
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Analyzing Texts

= Wizard of Oz (screen

play):

o Size of node reflects
number of scenes in
which character shares
dialogue

o Color of clusters reflects

Amu@an THREE 160GH Kios

strong interactions with | . —

each other

mapr.com
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Some Path Problems Are Easier than Others
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Getting John to his Office

*"Model road system using a digraph
°c Nodes: points where roads end or meet
o Edges: weighted connections between points
o Expected time between source and destination nodes .\&,‘e(eo’&
> Distance between source and destination nodes 45 o®

=Solve a graph optimization problem ©
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First Reported Use of Graph Theory

= Bridges of
Kdnigsberg
(1735)

= Possible to take
a walk that
traverses each of
the 7 bridges
exactly once?
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Leonhard Euler’s Model

= Each island a node

= Each bridge an undirected edge

" Model abstracts away irrelevant details
o Size of islands
o Length of bridges

° |s there a path that contains each edge exactly once?

> No!

o For such a path to exist, each node except the first and last must
have an even number edges

> No node has even number of edges
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What’s Interesting About This

= Not the Konigsberg bridges problem itself

=T he way Euler solved it

= A new way to think about a very large class of
problems
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Implementing Graphs

= Building graphs
° Nodes
o Edges
o Stitching them together to make graphs

= Using graphs

°c Many well know problems and algorithms for solving
them
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Classes Node and Edge

class Node(str): ,
pass Why*

class Edge(object):

def __init__ (self, src, dest, weight = 1):
""hUAssumes src and dest are nodes"""
self._src = src
self._dest = dest
self._weight = weight

def getSource(self):
return self._src

def getDestination(self):
return self._dest

def getWeight(self):
return self._weight

def __str__(self):
return self.src + '—>(' + self.getWeight() + ') '\

+ self.dest
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Common Representations of Digraphs

= Digraph is a directed graph
o Edges pass in one direction only

= Adjacency matrix
°c Rows: source nodes
o Columns: destination nodes
o Cell[s, d] =1 if there is an edge from s to d
= 0 otherwise
o Note that in digraph, matrix is not symmetric
o Uses O(|nodes| **2) memory

= Adjacency list
o Associate with each node a list of destination nodes
o Use O(|edges|) memory, therefore good for sparse graphs
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Class WeightedDigraph, part 1

class WeightedDigraph(object):

"""edges is a dict mapping each node to a list of wap“‘
its children and weight of edge""" 08 ?°
def __init__(self, nodes): RO
self._edges = {v: [] for v in nodes}‘ﬁdﬁﬁ N
def addNode(self, node): dgﬁQO
if node in self._edges:
raise ValueError('Duplicate node') ‘pdv*“g,
else: @2 s el
self._edges [node] = [] PRGNS
def addEdge(self, edge): Qﬁgﬁaéyfé w2’
"""Edge iS an Edgellllll 665‘\(\- ‘edﬁq
(o)
src = edge.getSource() 5
<d .dest = edge.getDestination()
we 4e8®7if not (src in self._edges and dest in self._edges):
s ég&p raise ValyeError('Node _npot in graph')
W self._edge@append( edge.getWeight()))
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Class Weighted Digraph, part 2

def childrenOf(self, node):
return [e[@] for e in self._edges[node]]
def hasNode(self, node):
return node in self._edges
def getAllNodes(self):
return(list(self. edges.keys()))
def __str__(self):
vals = []
for src in self._edges:
entry = src + ': '
for edge in self. edges[src]:
entry += edge[@] + '(' + str(edge[1l]) + '), '

if entry[-2:] !'= ": ": #there was at lLeast one edge
vals.append(entry[:-2])
else: a
vals.append(entry[:-1]) “\\e‘e"
vals.sort(key = lambda x: x.split(':')[@Q]) VN%O
result = "' 65%9
for v in vals: Qe

result += v + "\n'
return result[:-1] #omit final newline
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Built and Print a Graph

def buildCityGraph():

"""Generate and return an example graph"""

g = WeightedDigraph(('Boston', 'Providence', 'New York', 'Chicago"’,

‘Denver', 'Phoenix', 'Los Angeles'))

g.addEdge(Edge( 'Boston', 'Providence"))
g.addEdge(Edge('Boston', 'New York"))
g.addEdge(Edge( 'Providence', 'Boston'))
g.addEdge(Edge('Providence’, 'New York"))
g.addEdge(Edge( 'New York', 'Chicago'))
g.addEdge(Edge('Chicago’, 'Denver'))
g
g
g
g
r

.addEdge(Edge( 'Chicago', 'Phoenix'))
.addEdge(Edge( 'Denver', 'Phoenix"))
.addEdge(Edge( 'Denver', 'New York'))
.addEdge(Edge('Los Angeles', 'Boston'))
eturn g

g = buildCityGraph()
print('The city graph:")
print(g)
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The Graph

A4

Y

. Boston

( Providence >( New

(Chicago) (Demer )

Boston: Providence(1l), New York(1) —
Chicago: Denver(1l), Phoenix(1) @

Denver: Phoenix(1), New York(1) ~
Los Angeles: Boston(1) Los Angeles
New York: Chicago(1)

Phoenix:
Providence: Boston(1l), New York(1)
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A Classic Graph Optimization Problem

= Shortest (unweighted) path from n1 to n2
o Shortest sequence of edges such that
> Source node of first edge is nl
o Destination of last edge is n2

o For edges, el and e2, in the sequence, if e2 follows el in
the sequence, the source of e2 is the destination of el

= Shortest weighted path
> Minimize the sum of the weights of the edges in the path
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Some Shortest Path Problems

" Finding a route from one city to another
= Designing communication networks
= | ogistics of material handling

" Finding a path for a molecule through a chemical
labyrinth
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Finding the Shortest Path

= Algorithm 1, breadth-first search (BFS)
= Algorithm 2, depth-first search (DFS)
= Algorithm 3, Dijkstra’s algorithm

All use divide-and-conquer: if we can find a path from a source to
an intermediate node, and a path from the intermediate node to
the destination, the combination is a path (but not necessarily the
shortest) from source to destination
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Breadth First Search

= Start at an initial node

= Consider all the edges that leave that node, in some
order

= Follow the first edge, and check to see if at goal node
o |If so, stop

= If not, try the next edge from the current node that
has not yet been examined

= Continue until out of options

> When run out of edge options, move to next node at
same distance from start, and repeat

> When run out of node options, move to next level in the
graph (all nodes one step further from start), and repeat
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Breadth-first Search

def bfs(graph, start, end, toPrint = False):
""""Assumes graph is a Digraph; start and end are nodes
Returns a shortest path (number of hops) from start to end

in g'.aphllllll
visited = {} #no vertices visited thus fTar _ _ _
pathQueue = [[start]] #F1F0 <= First-in-first-out

visited[start] = True
while len(pathQueue) !'= 0:
tmpPath = pathQueue.pop(0)
if toPrint:
print('Current BFS path:', printPath(tmpPath))
lastNode = tmpPath[-1] .
if lastNode == end: Why is it ok to stop?
return tmpPath <
for nextNode in graph.childrenOf(lastNode):
if nextNode not in visited: #avoid visiting again
newPath = tmpPath + [nextNode]l #Note copy of list
visited [nextNode]l = True
pathQueue. append(newPath)

return None

Explore all paths with n hops before
exploring any path with more than n hops
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Output

(Boston to Phoenix)

Note that we
skip a path
that revisits a
node

Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:

Current BFS path:

Boston
Boston->Providence ~

Boston->New York -"/Phoenb/('x_._.,.
Boston->New York->Chicago —
Boston->New York->Chicago->Denver

Boston->New York->Chicago->Phoenix
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Visualizing as a tree search




. ioN
Depth First Search corce SO
Like ack PrO

S
= Start at an initial node to knaP

= Consider all the edges that leave that node, in some
order

= Follow the first edge, and check to see if at goal node
o If so, check if shorter than shortest already found

" If not, repeat the process from new node

=Continue until either find goal node, or run out of
options
> When run out of options, backtrack to the previous node
and try the next edge, repeating this process
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Implementation Like BFS, Except

= Uses a LIFO (often called a stack) instead of a FIFO
queue

= Finds multiple paths, not just one

LIFO




Depth-first Search

def dfs(graph, start, end, toPrint = False):
""HAssumes graph is a Digraph; start and end are nodes
Returns a shortest path from start to end in graph"""
bestPath = None
initPath = [start]
pathQueue = [initPath] #.1r0
while len(pathQueue) != 0:
#Get and remove newest element in pathQueue
tmpPath = pathQueue.pop(-1)
if toPrint:
print('Current DFS path:', printPath(tmpPath))
lastNode = tmpPath[-1]
if lastNode == end:
if toPrint:
print(‘Path found')
if bestPath == None or len(tmpPath) < len(bestPath):
bestPath = tmpPath

continue
if bestPath != None and len(tmpPath) >= len(bestPath):
continue

for nextNode in graph.childrenOf(lastNode):
if nextNode not in tmpPath:
newPath = tmpPath + [nextNode]
pathQueue.append(newPath)
return bestPath
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Output (Boston to Phoenix)

\2
( Bosm
//f_ = -~"f -
( Providence ) >(_New York )
- _____________,_.J-""l r_',_f’/
=
4 .
_ Chicago )
,"/

Current DFS path: Boston

Current DFS path: Boston->New York

Current DFS path: Boston->New York ->Chicago
Current DFS path: Boston->New York ->Chicago->Phoenix
Current DFS path: Boston->New York ->Chicago->Denver
Current DFS path: Boston->Providence

Current DFS path: Boston->Providence->New York

Current DFS path: Boston->Providence-New York->Chicago
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BFS and DFS

= BFS fast for unweighted graphs
o But early stopping does not work for weighted graphs

= DFS easily modified to deal with weighted graphs
o But slow

= Gets us to Dijkstra’s algorithm
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But First, a Five Minute Break

Dijkstra Dahl & Nygaard (Classes) Hoare (Quick Sort)
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Dijkstra’s Algorithm

= Generalization of breadth-first search that does not
require edges to have equal weights

= Uses a priority queue instead of a FIFO
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Three Key Data Structures and Basic Idea

= unvisited: list of nodes that have not yet been visited.
o Initially contains all nodes in graph

= distanceTo: a dict mapping each node to the minimum
distance found so far of that node from the start node

o Initially zero for start node and infinity for all others

= predecessor: a dict mapping each node to a predecessor
node on the shortest path found so far from start to that
node

o Initially None for all nodes

= Visit nodes in increasing order of distance from start (as in
BFS), updating distanceTo and predecessor

= When all nodes visited, construct shortest path from
predecessor by working backwards from end node
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Outline of Algorithm

" For current node (initially start node), chose a node
with shortest distance from current node to visit first

° This is the metric defining priority queue

® Check each of its neighbors
o Calculate distance from starting node to neighbor

= Will show implementation that assumes all edges
have equal weights

o Almost trivial to adapt to unequal weights
> But need to leave something for you to think about
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Initialization

def Dijkstra(graph, start, end, toPrint = False):

graph: an unweighted digraph

start: a node in graph

end: a node in graph

returns a list representing shortest path from start to end,
and None if no path exists"""

#Easily modified to deal with non-negative weighted edges

# Mark all nodes unvisited and store them.

# Set the distance to zero for our initial node

# and to infinity for other nodes.

unvisited = graph.getAllNodes()

distanceTo = {node: float('inf') for node in graph.getAllNodes()}
distanceTo[start] = 0

# Mark all nodes as not having found a predecessor node on path
#from start

predecessor = {node: None for node in graph.getAlWNodes()}
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Main LOOp 1 not empty

while unvisited: \While unvistt=s
# Select the unvisited node with the smallest distance from
# start, 1t's current node now. ““0
current = min(unvisited, key=lambda node: distanceTol[node]) .4 '\
if toPrint: #for pedagocical purposes “NgUs
oroe!

# Stop, if the smallest distance

# among the unvisited nodes is infinity.

if distanceTolcurrent] == float('inf'):
break

# Find unvisited neighbors for the current node

# and calculate their distances from start through the 05

# current node. ,{\(\%‘(‘0

for neighbour in graph.childrenOf(current): QQU“
alternativePathDist = distanceTol[current] + 1

# Compare the newly calculated distance to the assigned.

# Save the smaller distance and update predecssor.

if alternativePathDist < distanceTo[neighbour]:
distanceTo[neighbour] = alternativePathDist
predecessor [neighbour] = current

# Remove the current node from the unvisited set.
unvisited. remove(current)
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Build Path from predecessors

#Attempt to be build a path working backwards from end
path = []
current = end
while predecessor[current] != None:
path.insert(@, current)
current = predecessor[current]

if path != []:
path.insert(@, current)
else:

return None
return path
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Example

d and
Jide graph int© explor®
Divl aNS
Bosﬁﬂ}; unexpioree 2100 Value of current: Boston
— Value of distanceTo:
////r_‘\_ New Boston: 0@
i > Providence: inf
Pr 0 New York: inf
Chicago: inf
/,/—~xn - Denver: inf
. Chicago >( Denver Phoenix: inf
;;,j%y - Los Angeles: inf
Value of predecessor:

Boston: None

//"”‘“ Providence: None
@; New York: None
- i Chicago: None

Denver: None
Phoenix: None
Los Angeles: None
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Move Graph Cut

V

O\

Bosﬁfy

' ;/

Y

Denver

distanceTo and predecessor
guaranteed not to change for
nodes above the cut
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Value of current: Providence
Value of distanceTo:
Boston: ©
Providence: 1
New York: 1
Chicago: inf
Denver: inf
Phoenix: inf
Los Angeles: inf
Value of predecessor:
Boston: None
Providence: Boston
New York: Boston
Chicago: None
Denver: None
Phoenix: None
Los Angeles: None
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Move Graph Cut

T \_York_~
c 0/ >{ Denver

V

=

New

o
M |
S
0
\

Qs i3
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Value of current: New York
Value of distanceTo:
Boston: 0
Providence: 1
New York: 1
Chicago: inf
Denver: inf
Phoenix: inf
Los Angeles: inf
Value of predecessor:
Boston: None
Providence: Boston
New York: Boston
Chicago: None
Denver: None
Phoenix: None
Los Angeles: None
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Move Graph Cut

V

BS Value of current: Chicago
i Value of distanceTo:
Boston: 0
Providence: 1
New York: 1
Chicago: 2
Denver: inf
Phoenix: inf
Los Angeles: inf
Value of predecessor:
Boston: None
Providence: Boston
New York: Boston
Chicago: New York
Denver: None
Phoenix: None
Los Angeles: None
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Move Graph Cut

V

BOSESEV Value of current: Denver
— Value of distanceTo:

//’/’_‘“" New Boston: 0
Provi <

rovidence > Providence: 1
—® YQI,//’/ New York: 1
Chicago: 2
///,,»x, - Denver: 3
. | > Phoenix: 3
Chl Dnver Los Angeles: inf
h ” Value of predecessor:

Boston: None

S Providence: Boston
///, 4 New York: Boston
7 - Chicago: New York

Denver: Chicago
Phoenix: Chicago
Los Angeles: None

6.0002 LECTURE 3 50




Move Graph Cut

\\4
Bos
— Value of current: Phoenix
— — Value of distanceTo:
denc - New Boston: @
2 - Providence: 1
— Ykn;”// New York: 1
Chicago: 2
///"“““ - Denver: 3
Chicagol > Denver Phoenix: 3
;;_,g// _ Los Angeles: inf
Value of predecessor:

Boston: None
Providence: Boston
New York: Boston
Chicago: New York
Denver: Chicago
Phoenix: Chicago
Los Angeles: None

Qs i3

6.0002 LECTURE 3 51




Move Graph Cut

V

=

/~~ New Value of current: Los Angeles
. Value of distanceTo:
Providencé >
Boston: @
s” \kl[,//’/ Providence: 1
New York: 1
/,/””““ . Chicago: 2
; : S Denver: 3
Chl Denver Phoenix: 3
o = Los Angeles: inf

Value of predecessor:
Boston: None

//”‘—%“ Providence: Boston
{ New York: Boston
i — Chicago: New York
//

Denver: Chicago
Phoenix: Chicago
Los Angeles: None

Boston New York  Chicago
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Test on Some Large Graphs

Mean Time With Ave. Degree = 6 (20 trials)

® BFS

10000 15000 20000 25000

Number of Nodes

5000

O(|E| + |V] log [V])

30000

Seconds
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O(lE] + |V])

Mean Time With Ave. Degree = 6 (20 trials)

® Dijkstra ®
80 -
60 -

@
40 -
&
20 - °
°

0{ ® o

0 5000 10000 15000 20000 25000 30000

Number of Nodes
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So, Why Bother with Dijkstra’s Algorithm

= Suppose edges have non-negative weights?
o DFS and BFS have to explore all paths
o Dijkstra’s (suitably modified) does not

= All-nodes shortest path
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All Nodes Shortest Path

= Notice that end doesn’t come into play until last step
of algorithm

= predecessor can be used to quickly find a path from
start to any node in graph

= |f algorithm run using each node as start, and result
stored, can quickly find shortest path between any pair
of nodes

> Need not start from scratch for each starting node
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Summarizing

= Graphs are cool
o Best way to create a model of many things
o Capture relationships among objects

> Many important problems can be posed as graph
optimization problems we already know how to solve

= Depth-first and breadth-first search are important
algorithms

o Can be used to solve many problems

= Dijkstra’s algorithm better for finding shortest path in
large graphs with (non-negative) weighted edges

> Many variants optimized for specific applications

o Especially useful for multiple tasks
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