
NUMBERS,	
APPROXIMATIONS,	
and	BISECTION
(download	slides	and	.py files	to	follow	along)

6.0001	 LECTURE	3

Eric	Grimson

16.0001	LECTURE	39/9/19



Last	Time
§ strings	data	structure
§ iteration	and	loops	– while,	for
§ guess	and	check	algorithms

6.0001	LECTURE	3 29/9/19



Today
§ a	short	digression:
◦ representing	numbers

§ approximate	solutions
§ guess	&	check	using	approximations
§ bisection	methods

6.0001	LECTURE	3 39/9/19



Assigned	Reading
§Today:
◦ Sections	3.3	– 3.5

§Next	lecture:
◦ Section	4.1	– 4.3
◦ Sections	5.1	– 5.5

6.0001	LECTURE	3 4

See	https://mitpress.mit.edu/books/introduction-computation-and-programming-
using-python-second-edition for	errata	sheet

9/10/19



Numbers	 in	Python
§ int:	integers,	like	the	ones	you	learned	about	in	
elementary	school
§ float:	reals,	like	the	ones	you	learned	about	in	middle	
school

6.0001	LECTURE	3 59/9/19



A	Closer	Look	at	Floats
§Python	(and	every	other	programming	language)	uses	
“floating	point”	to	approximate real	numbers
§The	term	“floating	point”	refers	to	way	these	numbers	
are	stored	in	computer
§Approximation	usually	doesn’t	matter

6.0001	LECTURE	3 69/9/19



Actually	 It	Matters!
x = 0

for i in range(10):

x += 0.1

print(x == 1)

print(x, ‘==’, 10*0.1)

6.0001	LECTURE	3 79/9/19



Why?
§Representation	of	floating	point	numbers	is	function	of	
computer	hardware,	not	programming	language	
implementation
§Usual	representation:	standard	called	IEEE	754	floating	point
§Key	things	to	understand
◦ In	all	modern	computers,	numbers	(and	everything	else)	are	
represented	as	a	sequence	of	bits	(0	or	1).	Think	of	these	as	
binary	numbers	(i.e.,	base	2)

◦ When	we write	numbers	down,	we	are	using	a	notation	
designed	to	express	rational	numbers	using	base	10.		E.g.,	0.1	
stands	for	the	rational	number	1/10

◦ This	produces	cognitive	dissonance	– and	it	will	influence	how	
we	write	code

6.0001	LECTURE	3 89/9/19



Why	Binary?
§ Easy	to	implement	in	hardware—build	components	
that	can	be	in	one of	two states

6.0001	LECTURE	3 9

1960	($0.62/bit)		- 1975	($0.008/bit)

What	does	a	bit	of	dynamic	RAM	cost	today?
About	$8.25	per	Gigabyte!	Or	$0.000000001/bit

9/9/19

Core	
memory



Binary	Numbers
§Base	10	representation	of	an	integer	
◦ sum	of	powers	of	10,	scaled	by	integers	from	0	to	9

1507	=	1*103 +	5*102 +	0*101 +	7*100

=	1000	+	500	+	7
§Binary	representation	is	same	idea	in	base	2	
◦ sum	of	powers	of	2,	scaled	by	integers	from	0	to	1

§150710 =	1*210 +	1*28 +	1*27 +	1*26 +	1*25 +	1*21 +	1*20

=	1024	+	256	+	128	+	64	+	32	+	2	+	1
=	101111000112

6.0001	LECTURE	3 109/9/19



Converting	Decimal	
Integer	to	Binary
§We	input	integers	in	decimal,	computer	needs	to	convert	
to	binary
§Consider	example	of
◦ x	=	1910	=	1*24 +	0*23 +	0*22 +	1*21 +	1*20 =	10011

§ If	we	take	remainder	of	x	relative	to	2	(x%2),	that	gives	us	
the	last	binary	bit
§ If	we	then	integer	divide	x	by	2	(x//2),	all	the	bits	get	
shifted	right
◦ x//2	=	1*23 +	0*22 +	0*21 +	1*20 =	1001

§ Keep	doing	successive	divisions;	now	remainder	gets	next	
bit,	and	so	on
§ Let’s	us	convert	to	binary	form

6.0001	LECTURE	3 119/9/19



Doing	this	in	Python
if num < 0:

isNeg = True

num = abs(num)

else:

isNeg = False

result = ‘‘

if num == 0:

result = ‘0’

while num > 0:

result = str(num%2) + result

num = num//2

if isNeg:

result = ‘-’ + result

6.0001	LECTURE	3 129/9/19



Hardware
Implementation
§Computer	hardware	is	built	around	methods	that	can	
efficiently	store	information	as	0’s	or	1’s	(a	voltage	is	
“high”	or	“low”;	or	a	magnetic	spin	is	“up”	or	“down”)	
and	can	efficiently	perform	arithmetic	operations	on	
such	representations
§Fine	for	integer	arithmetic
§But	what	about	numbers	with	fractional	parts	(floats)?

6.0001	LECTURE	3 139/9/19



Fractions
§What	does	the	decimal	fraction	0.abc	mean?
◦ a*10-1 +	b*10-2 +	c*10-3

§For	binary	representation,	we	use	the	same	idea
◦ a*2-1 +	b*2-2 +	c*2-3

§Or	to	put	this	in	simpler	terms,	the	binary	
representation	of	a	decimal	fraction	f	would	require	
finding	the	values	of	a,	b,	c,	etc.	such	that
◦ f =	0.5a	+	0.25b	+	0.125c	+	0.0625d	+	0.03125e	+	…

6.0001	LECTURE	3 149/9/19



What	About	Fractions?
§ How	might	we	find	that	representation?
§ In	decimal	form:	3/8	=	0.375	=	3*10-1 +	7*10-2 +	5*10-3

§ If	we	can	multiply	by	a	power	of	2	big	enough	to	turn	
into	a	whole	number,	can	convert	to	binary,	and	then	
divide	by	the	same	power	of	2	to	restore
§ 0.375	*	(2**3)	=	310
§ Convert	3	to	binary	(now	112)
§ Divide	by	2**3	(shift	right	three	spots)	to	get	0.0112

6.0001	LECTURE	3 159/9/19



x = float(input('Enter a decimal number between 0 and 1: '))

p = 0
while ((2**p)*x)%1 != 0:

print('Remainder = ' + str((2**p)*x - int((2**p)*x)))
p += 1

num = int(x*(2**p))

result = ''
if num == 0:

result = '0'
while num > 0:

result = str(num%2) + result
num = num//2

for i in range(p - len(result)):
result = '0' + result

result = result[0:-p] + '.' + result[-p:]
print('The binary representation of the decimal ' + str(x) + ' is 
' + str(result))

6.0001	LECTURE	3 16

Find	power	
of	to	make	
integer

Convert	to	
int
Encode	as	
binary	
number

Pad	front	
with	0’s

Insert	
decimal

9/9/19



But	…
§If	there	is	no	integer	p	such	that	x*(2**p)	is	a	whole	
number,	then	internal	representation	is	always an	
approximation
§And I	am	assuming	that	the	representation	for	the	
decimal	fraction	I	provided	as	input	is	completely	
accurate	and	not	already	an	approximation	as	a	result	
of	number	being	read	into	Python
§Hence	the	floating	point	conversion	will	work	precisely	
for	numbers	like	3/8	but	not	for	1/10	– one	has	a	
power	of	2	that	converts	to	whole	number,	other	
doesn’t

6.0001	LECTURE	3 179/9/19



Why	is	this	a	problem?
§What	does	the	decimal	representation	0.125	mean
◦ 1*10-1 +	2*10-2 +	5*10-3

§Suppose	we	want	to	represent	it	in	binary?
◦ 1*2-3

§How	how	about	the	decimal	representation	0.1
◦ In	base	10:	1	*	10-1

◦ In	base	2:	?

6.0001	LECTURE	3 18

0.0001100110011001100110011…

Any	finite	number	of	bits	gives	us	an	approximation

0.001

9/9/19



And	the	point	is?
§If	everything	ultimately	is	represented	in	terms	of	bits,	
we	need	to	think	about	how	to	use	binary	
representation	to	capture	numbers
§Integers	are	straightforward
§But	real	numbers	(things	with	digits	after	the	decimal	
point)	are	a	problem:
◦ Have	to	somehow	approximate the	potentially	infinite	
binary	sequence	of	bits	needed	to	represent	them

6.0001	LECTURE	3 199/9/19



Floating	Point	Numbers
§ Floating	point	is	a	pair	of	integers
◦ Significant	digits	and	base	2	exponent
◦ (1,	1)	à 1*21 à 102à 2.0
◦ (1,	-1)	à 1*2-1 à 0.12à 0.5
◦ (125,	-2)	à 125*2-2 à 11111.012à 31.25

§The	maximum	number	of	significant	digits	governs	the	
precision	with	which	numbers	can	be	represented
◦ When	exceeded,	 numbers	 are	rounded

§Most	modern	computers	use	32	bits	to	represent	significant	
digits,	so	error	will	only	be	on	order	of 2*10-10

6.0001	LECTURE	3 209/10/19



6.0001	LECTURE	3 219/9/19



Because	You	Can	Get	
Surprising	Results

6.0001	LECTURE	3 22

x = 0
for i in range(10):
    x += 0.125
print(x == 1.25)

x = 0
for i in range(10):
    x += 0.1
print(x == 1)

print(x, '==', 10*0.1)

9/9/19



The	Moral	of	the	Story

6.0001	LECTURE	3 23

Never use	==	to	test	floats
Instead	test	whether	they	are	within	small	amount	of	each	other

What	gets	printed	isn’t	always	what	is	in	memory

9/9/19

Need	to	be	careful	in	designing	algorithms	that	use	floats



Effect	of	approximation	
on	our	algorithms?
§ Exact	answer	may	not	be	accessible
§ Need	to	find	ways	to	get	“good	enough”	answer
◦ Including	ways	to	decide	when	answer	is	“good	enough”	
or	“close	enough”	to	ideal	answer

§ Need	ways	to	deal	with	fact	that	exhaustive	
enumeration	can’t	test	every	possible	value,	since	set	
of	possible	answers	is	in	principle	infinite

6.0001	LECTURE	3 249/9/19



Finding	Roots
§ Last	lecture	we	looked	at	using	exhaustive	
enumeration/guess	and	check	methods	to	
find	the	roots	of	perfect	squares
§Suppose	we	want	to	find	the	square	root	of	
any	positive	integer,	or	any	positive	number
§Question:	What	does	it	mean	to	find	the	
square	root	of	x?
◦ Find	an	r	such	that	r*r	=	x	?
◦ If	x	is	not	a	perfect	square,	then	not	possible	
in	general	to	find	an	exact	r	that	satisfies	this	
relationship;	and	exhaustive	search	is	infinite

6.0001	LECTURE	3 25

Find	the	root	of	a	
perfect	food	(truffle)

9/9/19



Approximation
§Find	an	answer	that	is	“good	enough”
◦ E.g.,	find	a	r	such	that	r*r	is	within	 a	given	(small)	 distance	of	x
◦ By	tradition,	use	epsilon	 for	distance,	so	given	x	we	want	to	find	r
such	that	|𝑟$-x|<𝜀

§Algorithm	
◦ Start	with	guess	known	 to	be	too	small	 – call	it	g
◦ Increment	by	some	small	 value	– call	it	a – to	give	a	new	guess	g
◦ Check	 if	g**2 is	close	enough	 to	x (within	𝜀)
◦ Continue	until	get	answer	 close	enough	to	actual	answer

§Looking	at	all	possible	values	g + k*a for	integer	values	of	
k – so	similar	to	exhaustive	enumeration
◦ But	cannot	test	all	possibilities	 as	infinite

6.0001	LECTURE	3 269/10/19



Approximation	
Algorithms
§In	this	case,	we	have	two	parameters	to	set	– epsilon	
(how	close	are	we	to	answer?)	and	increment	(how	
much	to	increase	our	guess?)
§Performance	will	vary	based	on	these	values
◦ In	speed
◦ In	accuracy

§Decreasing	increment	size	à slower	program,	but	
more	likely	to	get	good	answer
§ Increasing	epsilon		à less	accurate	answer,	but	faster	
program

6.0001	LECTURE	3 279/9/19



Implementation

6.0001	LECTURE	3 28

x = 36
epsilon = 0.01
numGuesses = 0
ans = 0.0
increment = 0.0001
while abs(ans**2 - x) >= epsilon:

ans += increment
numGuesses += 1

print('numGuesses =', numGuesses)
if abs(ans**2 - x) >= epsilon:

print('Failed on square root of', x)
else:

print(ans, 'is close to square root of', x)

9/9/19



Reasoning	About	Loop	
Termination
§Define	a	decrementing	function
◦ Function	maps	variable(s)	in	
program	to	a	number

◦ Show	that	value	of	function	starts	
out	>=	0

◦ Show	that	value	is	decreased	each	
time	loop	body	is	executed

◦ Show	that	loop	is	exited	when	value	
is	<=	0

6.0001	LECTURE	3 299/9/19



Reasoning	About	Loop	
Termination
§Zeno’s	paradox
◦ Achilles	gives	a	tortoise	a	head	
start	in	a	race

◦ Both	run	at	different	constant	
speeds

◦ By	time	Achilles	reaches	tortoise’s	
starting	point,	tortoise	has	moved	
further	distance

◦ Repeat	argument
◦ Thus,	Achilles	can	never	catch	
tortoise

6.0001	LECTURE	3 30

Decrementing	function	should	be	decreased	each	time	in	a	way	
that	guarantees	that	it	reaches	0	in	a	finite	number	of	steps

9/9/19



Approximation	Algorithms

6.0001	LECTURE	3 31

x = 36
epsilon = 0.01
numGuesses = 0
ans = 0.0
increment = 0.0001
while abs(ans**2 - x) >= epsilon:

ans += increment
numGuesses += 1

print('numGuesses =', numGuesses)
if abs(ans**2 - x) >= epsilon:

print('Failed on square root of', x)
else:

print(ans, 'is close to square root of', x)

Function:	map	ans to
abs(ans**2 - x) – epsilon

Initial value > 0? 

Decremented by positive amount 
each iteration?

Yes: x - epsilon

Yes: from x-ans**2 
to x – (ans+increment)**2

Do	we	eventually	 exit?

9/9/19



Approximation	Algorithms

6.0001	LECTURE	3 32

x = 36
epsilon = 0.01
numGuesses = 0
ans = 0.0
increment = 0.0001
while abs(ans**2 - x) >= epsilon:

ans += increment
numGuesses += 1

print('numGuesses =', numGuesses)
if abs(ans**2 - x) >= epsilon:

print('Failed on square root of', x)
else:

print(ans, 'is close to square root of', x)

We	should	run	it,	and	check

Does	decrementing	 function	
always	eventually	 make	 this	
true?

Will	test	ever	
return	True?

9/9/19



Some	Observations
§ Didn’t	find	6

§ Took	about	60,000	guesses
§ Let’s	try:
◦ 24
◦ 2	
◦ 12345
◦ 54321

6.0001	LECTURE	3 339/9/19



Let’s	Debug	It

6.0001	LECTURE	3 34

x = 54321
epsilon = 0.01
numGuesses = 0
ans = 0.0
increment = 0.0001
while abs(ans**2 - x) >= epsilon:

ans += increment
numGuesses += 1
if numGuesses%100000 == 0:

print('Current guess =', ans)
print('Current guess**2 - x =', abs(ans*ans - x))

print('numGuesses =', numGuesses)
if abs(ans**2 - x) >= epsilon:

print('Failed on square root of', x)
else:

print(ans, 'is close to square root of', x)

9/9/19



Some	Observations
§Decrementing	function	eventually	starts	incrementing
◦ So	didn’t	exit	loop	as	expected

§We	have	over-shot	the	mark
◦ I.e.,	we	jumped	from	a	value	too	far	away	but	too	small	to	
one	too	far	away	but	too	large

§We	didn’t	account	for	this	possibility	when	writing	the	
loop
§Let’s	fix	that

6.0001	LECTURE	3 359/9/19



Let’s	Debug	It

6.0001	LECTURE	3 36

x = 54321
epsilon = 0.01
numGuesses = 0
ans = 0.0
increment = 0.0001
while abs(ans**2 - x) >= epsilon and ans**2 <= x:

ans += increment
numGuesses += 1
if numGuesses%50000 == 0:

print('Current guess =', ans)
print('Current guess**2 - x =',

abs(ans*ans - x))
print('numGuesses =', numGuesses)
if abs(ans**2 - x) >= epsilon:

print('Failed on square root of', x)
else:

print(ans, 'is close to square root of', x)

9/9/19



Some	Observations
§Decrementing	function	eventually	starts	incrementing
§We	have	over-shot	the	mark
§We	didn’t	account	for	this	possibility	when	writing	the	
loop
§Let’s	fix	that
§Now	it	stops,	but	reports	failure,	because	it	has	over-
shot	the	answer
§Let’s	try	resetting	increment	to	0.00001

6.0001	LECTURE	3 379/9/19



Lessons	Learned	 in	
Approximation	Algorithms
§Need	to	be	careful	that	looping	mechanism	doesn’t	
jump	over	exit	test	and	loop	forever
§Tradeoff	exists	between	efficiency	of	algorithm	and	
accuracy	of	result
§Need	to	think	about	how	close	an	answer	we	want	
when	setting	parameters	of	algorithm
§To	get	a	good	answer,	this	method	can	be	painfully	
slow.		
◦ Is	there	a	faster	way	that	still	gets	good	answers?

6.0001	LECTURE	3 389/9/19



Five	Minute	Break

399/9/19



Chance	to	Win	Bucks
§Suppose	I	attach	a	hundred	dollar	bill	to	a	particular	
page	in	the	text	book
§If	you	can	guess	page	in	8	or	fewer	guesses,	you	get	
the	“Benjamin”
§If	you	fail,	you	lose	a	late	day
§Hint:	the	book	is	447	pages	long
§Would	you	want	to	play?
§Now	suppose	on	each	guess	I	told	you	whether	you	
were	correct,	or	too	low	or	too	high
§Would	you	want	to	play	in	this	case?

6.0001	LECTURE	3 409/9/19



Bisection	Search
§We	are	given	a	problem	where	there	is	an	inherent	order	to	
the	range	of	possible	answers,	and	thus	range	of	answers	
forms	a	coherent	interval
§Suppose	we	know	answer	lies	within	some	interval
◦ Guess	midpoint	of	interval
◦ If	not	answer,	then	check	if	answer	is	greater	than	or	less	than	
midpoint

◦ Change	 interval
◦ Repeat

§Process	cuts	set	of	things	to	check	in	half	at	each	stage
◦ Exhaustive	 search	reduces	set	of	possible	 answers	from	N	to	N-
1	on	each	step;	bisection	 search	reduces	from	N	to	N/2

6.0001	LECTURE	3 419/9/19



Log	Growth	Is	Better
§Process	cuts	set	of	things	to	check	in	half	at	each	stage
◦ Characteristic	of	a	logarithmic	growth

§We	can	replace	the	algorithm	that	is	linear	in	the	
number	of	possible	guesses	with	one	is	that	logarithmic	
on	the	number	of	possible	guesses
◦ This	should	be	much	more	efficient

6.0001	LECTURE	3 429/9/19



Bisection	Search
§ Suppose	we	know	that	the	answer	lies	between	0	and	x
§ Rather	than	exhaustively	trying	things	starting	at	0,	
suppose	instead	we	pick	a	number	in	the	middle	of	this	
range

§ If	we	are	lucky,	this	answer	is	close	enough

6.0001	LECTURE	3 43

0 x

g

9/9/19



Bisection	Search

6.0001	LECTURE	3 44

§ If	not	close	enough,	is	guess	too	big	or	too	small?
§ If	g**2	>	x,	then	know	g	is	too	big;	so	now	search

§ And	if,	for	example,	this	new	g	is	such	that	g**2	<	x,	
then	know	too	small;	so	now	search

§ At	each	stage,	reduce	range	of	values	to	search	by	half

0 x

gnew	g

0 x

gnew	g next	g

Replace	algorithm	that	is	linear	in	the	number	of	possible	guesses
with	one	is	that	logarithmic	in	the	number	of	possible	guesses

9/9/19



Fast	Square	Root

6.0001	LECTURE	3 45

x = 54321
epsilon = 0.01
numGuesses = 0
low = 0.0
high = x
ans = (high + low)/2
while abs(ans**2 - x) >= epsilon:

print('low = ' + str(low) + ' high = ' + str(high)\
+ ' ans = ' + str(ans))

numGuesses += 1
if ans**2 < x:

low = ans
else:

high = ans
ans = (high + low)/2.0

print('numGuesses = ' + str(numGuesses))
print(str(ans) + ' is close to square root of ' + str(x))

9/9/19



Bisection	Search	– Cube	Root
cube = 27
epsilon = 0.01
numGuesses = 0
low = 0
high = cube
ans = (high + low)/2.0
while abs(ans**3 - cube) >= epsilon:

if ans**3 < cube :
low = ans

else:
high = ans

ans = (high + low)/2.0
numGuesses += 1

print('numGuesses =', numGuesses)
print(ans, 'is close to the cube root of', cube)

6.0001	LECTURE	3 469/9/19



Log	Growth	Is	Better!
§Brute	force	search	for	root	of	54321	took	over	23M	guesses

§With	bisection	search,	reduced	to	30	guesses!

§We’ll	spend	more	time	on	this	later,	but	we	say	the	brute	force	
method	is	linear in	size	of	problem,	because	number	to	steps	
grows	linearly	as	we	increase	problem	size

§Bisection	search	is	logarithmic in	size	of	problem,	because	
number	of	steps	grows	logarithmically	with	problem	size
◦ search	space
◦ first	guess:	 N/2
◦ second	guess:	 N/4
◦ kth guess: N/2k

◦ guess	converges	on	the	order	of	log2N	steps
6.0001	LECTURE	3 479/9/19



Does	it	always	work?
§ Try	running	code	for	x	such	that	0	<	x	<	1
§ If	x	<	1,	we	are	searching	from	0	to	x	but	know	square	
root	is	greater	than	x	and	less	than	1
§Modify	the	code	to	choose	the	search	space	
depending	on	value	of	x

6.0001	LECTURE	3 489/9/19



6.0001	LECTURE	3 49

x = 0.5 
epsilon = 0.01 
numGuesses = 0 
if x >= 1: 
    low = 1.0 
    high = x 
else: 
    low = x 
    high = 1.0 
ans = (high + low)/2 
 
while abs(ans**2 - x) >= epsilon: 
    print('low = ' + str(low) + ' high = ' + str(high)\ 
          + ' ans = ' + str(ans)) 
    numGuesses += 1 
    if ans**2 < x: 
        low = ans 
    else: 
        high = ans 
    ans = (high + low)/2.0 
print('numGuesses = ' + str(numGuesses)) 
print(str(ans) + ' is close to square root of ' + str(x))

9/9/19



Some	Observations
§ Bisection	search	radically	reduces	computation	time	–
being	smart	about	generating	guesses	is	important
§ Search	space	gets	smaller	quickly	at	the	beginning	and	
then	more	slowly	(in	absolute	terms,	but	not	as	a	
fraction	of	search	space)	later
§Works	on	problems	with	“ordering”	property	– value	
of	function	being	solved	varies	monotonically	with	
input	value
◦ Here	function	is	ans**2;	which	grows	as	ans grows

6.0001	LECTURE	3 509/9/19



Newton-Raphson
§ General	approximation	algorithm	to	find	roots	of	a	
polynomial	in	one	variable

p(x)	=	anxn +	an-1xn-1 +	…	+	a1x	+	a0
§Want	to	find	r	such	that	p(r)	=	0
§ For	example,	to	find	the	square	root	of	24,	find	the	root	of	
p(x)	=	x2 – 24
§ Newton	and	Raphson showed	that	if	g	is	an	approximation	
to	the	root,	then

g – p(g)/p’(g)
is	a	better	approximation;	where	p’	is	derivative	of	p

6.0001	LECTURE	3 519/9/19



Intuition	for	Newton-Raphson

9/11/19 6.0001	LECTURE	3 52



Newton-Raphson Root	Finder
§Simple	case:	cx2 +	k
§First	derivative:	2cx
§So	if	polynomial	is	x2 +	k,	then	derivative	is	2x
§Newton-Raphson says	given	a	guess	g	for	root	of	k,	a	
better	guess	is

g – (g2 –k)/2g

6.0001	LECTURE	3 539/9/19



Newton-Raphson Root	Finder	
§Another	way	of	generating	guesses,	which	we	can	check;	
very	efficient

6.0001	LECTURE	3 54

epsilon = 0.01

y = 24.0

guess = y/2.0

numGuesses = 0

while abs(guess*guess - y) >= epsilon:

numGuesses += 1

guess = guess - (((guess**2) - y)/(2*guess))

print(‘numGuesses = ‘ + str(numGuesses))

print('Square root of ' + str(y) + ' is about ' + str(guess))
9/9/19



Iterative	Algorithms
§ Guess	and	check	methods	build	on	reusing	same	code
◦ Use	a	looping	construct	to	generate	guesses,	then	check	
and	continue

§ Generating	guesses
◦ Exhaustive	enumeration
◦ Bisection	search
◦ Newton-Raphson (for	root	finding)

6.0001	LECTURE	3 559/9/19



Summary
§For	many	problems,	cannot	find	exact	answer;	need	to	
seek	“good	enough”	answer	using	approximations
§When	testing	floating	point	numbers	(e.g.,	as	part	of	
an	approximate	answer),	important	to	understand	how	
computer	represents	these	in	binary,	and	why	we	use	
“close	enough”	and	not	“==“
§Bisection	search	is	a	great	way	to	reduce	a	linear	
algorithm	to	a	logarithmic	one

6.0001	LECTURE	3 569/9/19


