Knapsack Problems and
Dynamic Programming

(download slides and .py files from Stellar to follow along)

John Guttag

MIT Department of Electrical Engineering and
Computer Science

Relevant Reading

" Chapter 13

= Section 5.3.2 (List

comprehension) 7 Introduction to
: Ccyputation

a,nd Programming
“Using Python

With Application to Understanding Data

/ X :/ : &

.y

second edition
John \7téag

6.0002 LECTURE 2 2

Search Tree Implementation, revisited

*The tree is built top down starting with the root

=The first element is selected from the still to be
considered items
o If there is room for that item in the knapsack, a node is

constructed that reflects the consequence of choosing to

take that item. By convention, we draw that as the left
child

> We also explore the consequences of not taking that
item. This is the right child

*The process is then applied recursively to non-leaf
children

=*Once tree generated, chose a node with the highest
value that meets constraints

6.0002 LECTURE 2 3

Header for Decision Tree Implementation

def maxVal(toConsider, avail):
"""Assumes toConsider a list of items,
avail a weight
Returns a tuple of the total value of a solution
to the 0/1 knapsack problem and the items of
that solution™""

toConsider. Those items that nodes higher up in the tree
(corresponding to earlier calls in the recursive call stack)
have not yet considered

avail. The amount of space still available

6.0002 LECTURE 2 i

Body of maxVal

if toConsider == [] or avail == 0: Don’t explore paths
result = (0, ()) that exceed

ellf toCon51der[0] getCost() > avail: constraint
resul = maxVal(toCon51der[1], avail) Local variable

else:
nextItem = toCon51der[@]

i** “‘:. \ N / H'» ; s } ‘j“‘ FD :35":.
L [

w1thVa1 w1thToTake = maxVal(toConsider[1l:],
avail - nextItem.getCost())
w1thVa1 += nextItem getValue()

7 fﬂ ;‘Vé :ﬂ=

result records
best solution so far

w1thoutVal w1thoutToTake = maxVal(toConsider[1:], avail)
1f w1thVal > w1thoutVal
result = (withVal, withToTake + (nextItem,))
else:
result
return result

6.0002 LECTURE 2 5

(withoutVal, withoutToTake)

Some Things to Note

=*Don’t actually build a search tree

"Generate one path through the tree at a time
o Path encoded in recursive call stack

=Keep track of best path so far
> In local variable result

6.0002 LECTURE 2 6

Try It on Example from Lecture 1

=With calorie budget of 750 calories, chose an optimal
set of foods from the menu

m-mmmmmm

Value 89

calories 123 154 258 354 365 150 95 195

6.0002 LECTURE 2 7

Use greedy by value on 8 items
Total value of items taken = 284
burger: <100, 354>
pizza: <95, 258>
wine: <89, 123>
Use greedy by density on 8 items
Total value of items taken = 318
wine: <89, 123>
beer: <90, 154>
cola: <79, 150>
apple: <50, 95>
donut: <10, 195>
Use greedy by cost on 8 items
Total value of items taken = 318
apple: <50, 95>
wine: <89, 123>
cola: <79, 150>
beer: <90, 154>
| donut: <10, 195>

Optimal value = 353
cola: <79, 150>
pizza: <95, 258>
beer: <90, 154>
wine: <89, 123>

6.0002 LECTURE 2 8

Search Tree Worked Great

=Gave us a better answer than any of the greedies
=Finished quickly

=But 28 is not a large number

o We should look at what happens when we have a more
extensive menu to choose from

6.0002 LECTURE 2 9

Code to Try Larger Examples

def buildLargeMenu(numItems, maxVal, maxCost):
items = []
for i in range(numItems): ‘//////’/
items.append(Food(str(i),
random. randint (1, maxVal),

random. randint (1, maxCost)))
return items

import random
random.seed(1) <«

numCalories = 750

for numItems in (8, 16, 32, 64, 128, 256, 512, 1024):
items = buildLargeMenu(numItems, 100, 300)
print('Test on', len(items), 'items')
greedyVal = testGreedys(items, numCalories, False)
print('Best greedy solution =', greedyVal)
optVal = testMaxVal(items, numCalories, False)
print('Optimal solution =', optVal, '\n')

6.0002 LECTURE 2

Random Test Data

="\When you want to see how things scale, you need large test
sets

=You want to generate them, not type them

=Generating them randomly
o Helps to avoid bias

o Can generate different test data each run
° Both good and bad
o Used random.seed to ensure same result each time

Run it

6.0002 LECTURE 2 11

s It Hopeless?

"|In theory, yes
"|n practice, no!

=Dynamic programming to the rescue

HERE | COME

& S

R

TO SAVE THEDAY!

6.0002 LECTURE 2

Returning to an Example from 6.0001

def fib(n):
if n==0 or n == 1:
return 1
else:

return fib(n - 1) + fib(n - 2)

for i in range(@, 1001, 5):
print('fib(' + str(i) + ') =', fib(i))

How far do think we’ll get before our patience runs out?

ng?
ny is it aking 5 °
Why

6.0002 LECTURE 2

Call Tree for Recursive Fibonnaci(6) = 13

fib6)
(fib(2) | |fib(1) | |fib(2) | |fib(1) | {fib(1) | [fibi0) |

M (fib(1) | [fib(1) | [fib(o) | | fib(1) | |fib(o) | |fib(1) | |fib(0)|

(fib(1) | | fib) |

Clearly a Bad Idea to Repeat Work

" Trade a time for space

= Create a table to record what we’ve done

o Before computing fib(x), check if value of fib(x)
already stored in the table

o If so, look it up
° If not, compute it and then add it to table
o Called memoization

6.0002 LECTURE 2

Using a Memo to Compute Fibonnaci

def fastFib(n, memo = None):
"""Assumes n is an int >= 0@, memo used only by
recursive calls
Returns Fibonacci of n"""

if memo == None:
memo = {}

iTn=20 6 n ==
return 1

try:

return memol[n]
except KeyError:
result = fastFib(n-1, memo) + fastFib(n-2, memo)
memo[n] = result
return result

6.0002 LECTURE 2

Let’s Try It

How far do think we’ll get before our patience runs out?

Let’s push our luck: for i in range(@, 5001, 100):

6.0002 LECTURE 2 17

Tabular Approach to DP

= Memoization top-down
o Start from problem to be solved, the biggest problem
> Build memo as new sub-problems come up

=Tabular bottom-up
o Solve all sub-problems starting with smallest problem

def fastFibTab(n):
"MAssumes n 1s an int >= 0
Returns Fibonacci of n"""
tab = [1]*(n+l) #only first two values matter
for i in range(2, n + 1):
tab[i] = tab[i-1] + tab[i-2]
return tabl[n]

Try it

6.0002 LECTURE 2 18

Tabularization vs. Memoization

= |f the original problem requires all subproblems to be
solved, tabular method usually better

o Tabular method easier to implement

o Tabulation usually faster. (Tabulation has no overhead for
recursion and can use a pre-allocated fixed size list.)

=|f only some of the subproblems needs to be solved to
solve the original problem, memoization usually better

o More efficient because subproblems are solved lazily, only
perform the the computations that are needed

6.0002 LECTURE 2 19

When Does DP Help?

=Optimal substructure: a globally optimal solution can
be found by combining optimal solutions to local
subproblems

> For x > 1, fib(x) = fib(x - 1) + fib(x — 2)

=Qverlapping subproblems: finding an optimal solution
involves solving the same problem multiple times

o Compute fib(x) or many times

6.0002 LECTURE 2

What About 0/1 Knapsack Problem?

=Do these conditions hold?

6.0002 LECTURE 2

Five Minute Break

6.0002 LECTURE 2 22

Does the Knapsack Problem Exhibit

=Optimal substructure: a globally optimal solution can
be found by combining optimal solutions to local
subproblems

=Qverlapping subproblems: finding an optimal solution
involves solving the same problem multiple times

6.0002 LECTURE 2

Search Tree Optimal substructure?
/ ﬂ? Overlapping subproblems?

m// \‘ _

L

-
N\

\VaI=17O Val =120 Val=140 Val=90 Val=80 “Vval=30 Val=50 T Val=0
Cal =766 Cal =766 Cal=508 Cal=145 Cal=612 Cal = 258 Cal = 354 Cal=0

24

A Different Menu

mmmm

Value 90

calories 154 258 354 154

6.0002 LECTURE 2 25

A Subtree

Problem Being Solved at Each Node

" Given remaining weight, maximize value by
choosing among remaining items

= Set of previously chosen items, or even value of that
set, doesn’t matter!

= So, let’s give DP a shot
> Memoization or tabular?

6.0002 LECTURE 2

Modify maxVal to Use a Memo

"Add memo as a third argument

=Key of memo is a tuple
o (items left to be considered, available weight)
o ltems left to be considered represented by
len(toConsider)

=First thing body of function does is check whether the
optimal choice of items given the the available weight
is already in the memo

=| ast thing body of function does is update the memo

6.0002 LECTURE 2

Performance

Number of
calls in DP
2 4 7

4 16 25
256 427
16 65,536 5,191

32 4,294,967,296 22,701

6.0002 LECTURE 2

Performance

Number of
calls in DP
2 4 7

4 16 25
256 427
16 65,536 5,191
32 4,294,967,296 22,701
64 18,446,744,073,709,551,616 42,569
128 340,282,366,920,938,463,463,374,607,431,768,211, 83,319
456
256 115,792,089,237,316,195,423,570,985,008,687,907, 176,614

853,269,984,665,640,564,039,457,584,007,913,129,
639,936

6.0002 LECTURE 2

How Can This Be?

= Problem is exponential
= Have we overturned the laws of the universe?

= |s dynamic programming a miracle?

6.0002 LECTURE 2

A Miracle?

= No, but computational complexity can be subtle

= Algorithm falls into a complexity class called pseudo-
polynomial

def isPrime(x):
"HAssumes x is an int > 2
Returns True if x is prime and false otherwise"""
for i in range(2, x):
if x%i ==
return: Eilse But for some range of
return True values, we don’t care

Linear in value of x about number of bits

But exponential in number bits used to represent x, i.e. in
length of input—2!08

6.0002 LECTURE 2

And fastMaxVal?

= Running time of fastMaxVal is polynomial in number of
distinct pairs, <toConsider, avail>

= Number of possible values of toConsider bounded by
len(1tems)

= Possible values of avai 1l a bit harder to characterize
> Bounded by number of distinct sums of weights

6.0002 LECTURE 2

More Distinct Combinations

def buildLargeMenul(numItems, maxVal, maxCost):
items = []
for i in range(numItems):
items.append(Food(str(i),
random. randint(1, maxVal),
random. random()*maxCost))
return items

import random
random.seed(1)

numCalories = 750

for numItems in (8, 16, 32, 64, 128, 256, 512, 1024):
items = buildLargeMenul(numItems, 100, 300)
print('Test on', len(items), 'items')
optVal = testFastMaxVal(items, numCalories, False)
print('Optimal solution =', optVal, '\n')

6.0002 LECTURE 2 34

Why is It Called Dynamic Programming?

“The 1950s were not good years for mathematical
research... | felt | had to do something to shield Wilson
and the Air Force from the fact that | was really doing
mathematics... What title, what name, could | choose?
... It's impossible to use the word dynamic in a
pejorative sense. Try thinking of some combination that
will possibly give it a pejorative meaning. It's impossible.
Thus, | thought dynamic programming was a good
name. It was something not even a Congressman could
object to. So | used it as an umbrella for my activities.

Richard Bellman, Eye of the Hurricane: an Autobiography

6.0002 LECTURE 2

Summary of Lectures 1-2 (so far)

= Many problems of practical importance can be
formulated as optimization problems

= Greedy algorithms often provide adequate (though
not necessarily optimal) solutions

= Finding an optimal solution is usually exponentially
hard

= But dynamic programming often yields good
performance for a subclass of optimization problems—
those with optimal substructure and overlapping
subproblems

> Solution always correct
o Fast under the right circumstances

6.0002 LECTURE 2

Since | Have a Few Minutes, more Python

= Conditional expressions

= List comprehension

6.0002 LECTURE 2 37

Conditional Expressions

el if ¢ else e2

1) Evaluate c
2) If cis True, the value of the expression is el
3) If cif False, the value of the expression is e2

x/y if y =0 else None

6.0002 LECTURE 2

38

List Comprehension

—
|

[expression for item in L if conditional]

L = []
for item in list:
if conditional:

L.append(expression)

6.0002 LECTURE 2 39

List Comprehension

L = [ixi for i in range(10)]

L = []
for i in range(10):
L.append(ixi)

6.0002 LECTURE 2 40

List Comprehension

L = [ixx2 for i in range(10) if i%2 != 0]

sentence = '6.0002 is the greatest'’
L = [word[@] for word in sentence.split(' ')]
print(L)

D = {word[@]:sentence.count(word[0])\
for word in sentence.split(' ')}
print(D)

6.0002 LECTURE 2 41

Today’s Puzzler

def getSomething(n):
return [p for p in range(2, n+1)\
if @ not in [p%d for d in range(2, p)]]

print([x for x in range(101) if x not in\

({i+1:getSomething(101) [i]\
for i in range(len(getSomething(101)))}).values()])

6.0002 LECTURE 2 42

