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Search Tree Implementation, revisited

*The tree is built top down starting with the root

=The first element is selected from the still to be
considered items
o If there is room for that item in the knapsack, a node is

constructed that reflects the consequence of choosing to

take that item. By convention, we draw that as the left
child

> We also explore the consequences of not taking that
item. This is the right child

*The process is then applied recursively to non-leaf
children

=*Once tree generated, chose a node with the highest
value that meets constraints
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Header for Decision Tree Implementation

def maxVal(toConsider, avail):
"""Assumes toConsider a list of items,
avail a weight
Returns a tuple of the total value of a solution
to the 0/1 knapsack problem and the items of
that solution™""

toConsider. Those items that nodes higher up in the tree
(corresponding to earlier calls in the recursive call stack)
have not yet considered

avail. The amount of space still available
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Body of maxVal

if toConsider == [] or avail == 0: Don’t explore paths
result = (0, ()) that exceed

ellf toCon51der[0] getCost() > avail: constraint
resul = maxVal(toCon51der[1 ], avail) Local variable

else:
nextItem = toCon51der[@]

i** “‘:. \ N / H'» ; s } ‘j“‘ FD :35":.
L [

w1thVa1 w1thToTake = maxVal(toConsider[1l:],
avail - nextItem.getCost())
w1thVa1 += nextItem getValue()

7 fﬂ ;‘Vé :ﬂ=

result records
best solution so far

w1thoutVal w1thoutToTake = maxVal(toConsider[1:], avail)
1f w1thVal > w1thoutVal
result = (withVal, withToTake + (nextItem,))
else:
result
return result

6.0002 LECTURE 2 5

(withoutVal, withoutToTake)



Some Things to Note

=*Don’t actually build a search tree

"Generate one path through the tree at a time
o Path encoded in recursive call stack

=Keep track of best path so far
> In local variable result
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Try It on Example from Lecture 1

=With calorie budget of 750 calories, chose an optimal
set of foods from the menu

m-mmmmmm

Value 89

calories 123 154 258 354 365 150 95 195
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Use greedy by value on 8 items
Total value of items taken = 284
burger: <100, 354>
pizza: <95, 258>
wine: <89, 123>
Use greedy by density on 8 items
Total value of items taken = 318
wine: <89, 123>
beer: <90, 154>
cola: <79, 150>
apple: <50, 95>
donut: <10, 195>
Use greedy by cost on 8 items
Total value of items taken = 318
apple: <50, 95>
wine: <89, 123>
cola: <79, 150>
beer: <90, 154>
| donut: <10, 195>

Optimal value = 353
cola: <79, 150>
pizza: <95, 258>
beer: <90, 154>
wine: <89, 123>
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Search Tree Worked Great

=Gave us a better answer than any of the greedies
=Finished quickly

=But 28 is not a large number

o We should look at what happens when we have a more
extensive menu to choose from
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Code to Try Larger Examples

def buildLargeMenu(numItems, maxVal, maxCost):
items = []
for i in range(numItems): ‘//////’/
items.append(Food(str(i),
random. randint (1, maxVal),

random. randint (1, maxCost)))
return items

import random
random.seed(1) <«

numCalories = 750

for numItems in (8, 16, 32, 64, 128, 256, 512, 1024):
items = buildLargeMenu(numItems, 100, 300)
print('Test on', len(items), 'items')
greedyVal = testGreedys(items, numCalories, False)
print('Best greedy solution =', greedyVal)
optVal = testMaxVal(items, numCalories, False)
print('Optimal solution =', optVal, '\n')
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Random Test Data

="\When you want to see how things scale, you need large test
sets

=You want to generate them, not type them

=Generating them randomly
o Helps to avoid bias

o Can generate different test data each run
° Both good and bad
o Used random.seed to ensure same result each time

Run it
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s It Hopeless?

"|In theory, yes
"|n practice, no!

=Dynamic programming to the rescue

HERE | COME

& S

R

TO SAVE THEDAY!
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Returning to an Example from 6.0001

def fib(n):
if n==0 or n == 1:
return 1
else:

return fib(n - 1) + fib(n - 2)

for i in range(@, 1001, 5):
print('fib(' + str(i) + ') =', fib(i))

How far do think we’ll get before our patience runs out?

ng?
ny is it aking 5 °
Why
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Call Tree for Recursive Fibonnaci(6) = 13

fib6)
(fib(2) | |fib(1) | |fib(2) | |fib(1) | {fib(1) | [fibi0) |

M (fib(1) | [ fib(1) | [fib(o) | | fib(1) | |fib(o) | |fib(1) | |fib(0)|

(fib(1) | | fib) |




Clearly a Bad Idea to Repeat Work

" Trade a time for space

= Create a table to record what we’ve done

o Before computing fib(x), check if value of fib(x)
already stored in the table

o If so, look it up
° If not, compute it and then add it to table
o Called memoization
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Using a Memo to Compute Fibonnaci

def fastFib(n, memo = None):
"""Assumes n is an int >= 0@, memo used only by
recursive calls
Returns Fibonacci of n"""

if memo == None:
memo = {}

iTn=20 6 n ==
return 1

try:

return memol[n]
except KeyError:
result = fastFib(n-1, memo) + fastFib(n-2, memo)
memo[n] = result
return result
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Let’s Try It

How far do think we’ll get before our patience runs out?

Let’s push our luck: for i in range(@, 5001, 100):
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Tabular Approach to DP

= Memoization top-down
o Start from problem to be solved, the biggest problem
> Build memo as new sub-problems come up

=Tabular bottom-up
o Solve all sub-problems starting with smallest problem

def fastFibTab(n):
"MAssumes n 1s an int >= 0
Returns Fibonacci of n"""
tab = [1]*(n+l) #only first two values matter
for i in range(2, n + 1):
tab[i] = tab[i-1] + tab[i-2]
return tabl[n]

Try it
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Tabularization vs. Memoization

= |f the original problem requires all subproblems to be
solved, tabular method usually better

o Tabular method easier to implement

o Tabulation usually faster. (Tabulation has no overhead for
recursion and can use a pre-allocated fixed size list.)

=|f only some of the subproblems needs to be solved to
solve the original problem, memoization usually better

o More efficient because subproblems are solved lazily, only
perform the the computations that are needed
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When Does DP Help?

=Optimal substructure: a globally optimal solution can
be found by combining optimal solutions to local
subproblems

> For x > 1, fib(x) = fib(x - 1) + fib(x — 2)

=Qverlapping subproblems: finding an optimal solution
involves solving the same problem multiple times

o Compute fib(x) or many times
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What About 0/1 Knapsack Problem?

=Do these conditions hold?
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Five Minute Break
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Does the Knapsack Problem Exhibit

=Optimal substructure: a globally optimal solution can
be found by combining optimal solutions to local
subproblems

=Qverlapping subproblems: finding an optimal solution
involves solving the same problem multiple times
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Search Tree Optimal substructure?
/ ﬂ? Overlapping subproblems?

m// \‘ _
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Cal =766 Cal =766 Cal=508 Cal=145 Cal=612 Cal = 258 Cal = 354 Cal=0
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A Different Menu

mmmm

Value 90

calories 154 258 354 154
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A Subtree




Problem Being Solved at Each Node

" Given remaining weight, maximize value by
choosing among remaining items

= Set of previously chosen items, or even value of that
set, doesn’t matter!

= So, let’s give DP a shot
> Memoization or tabular?
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Modify maxVal to Use a Memo

"Add memo as a third argument

=Key of memo is a tuple
o (items left to be considered, available weight)
o ltems left to be considered represented by
len(toConsider)

=First thing body of function does is check whether the
optimal choice of items given the the available weight
is already in the memo

=| ast thing body of function does is update the memo
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Performance

Number of
calls in DP
2 4 7

4 16 25
256 427
16 65,536 5,191

32 4,294,967,296 22,701
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Performance

Number of
calls in DP
2 4 7

4 16 25
256 427
16 65,536 5,191
32 4,294,967,296 22,701
64 18,446,744,073,709,551,616 42,569
128 340,282,366,920,938,463,463,374,607,431,768,211, 83,319
456
256 115,792,089,237,316,195,423,570,985,008,687,907, 176,614

853,269,984,665,640,564,039,457,584,007,913,129,
639,936
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How Can This Be?

= Problem is exponential
= Have we overturned the laws of the universe?

= |s dynamic programming a miracle?
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A Miracle?

= No, but computational complexity can be subtle

= Algorithm falls into a complexity class called pseudo-
polynomial

def isPrime(x):
"HAssumes x is an int > 2
Returns True if x is prime and false otherwise"""
for i in range(2, x):
if x%i ==
return: Eilse But for some range of
return True values, we don’t care

Linear in value of x about number of bits

But exponential in number bits used to represent x, i.e. in
length of input—2!08
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And fastMaxVal?

= Running time of fastMaxVal is polynomial in number of
distinct pairs, <toConsider, avail>

= Number of possible values of toConsider bounded by
len(1tems)

= Possible values of avai 1l a bit harder to characterize
> Bounded by number of distinct sums of weights
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More Distinct Combinations

def buildLargeMenul(numItems, maxVal, maxCost):
items = []
for i in range(numItems):
items.append(Food(str(i),
random. randint(1, maxVal),
random. random( )*maxCost) )
return items

import random
random.seed(1)

numCalories = 750

for numItems in (8, 16, 32, 64, 128, 256, 512, 1024):
items = buildLargeMenul(numItems, 100, 300)
print('Test on', len(items), 'items')
optVal = testFastMaxVal(items, numCalories, False)
print('Optimal solution =', optVal, '\n')
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Why is It Called Dynamic Programming?

“The 1950s were not good years for mathematical
research... | felt | had to do something to shield Wilson
and the Air Force from the fact that | was really doing
mathematics... What title, what name, could | choose?
... It's impossible to use the word dynamic in a
pejorative sense. Try thinking of some combination that
will possibly give it a pejorative meaning. It's impossible.
Thus, | thought dynamic programming was a good
name. It was something not even a Congressman could
object to. So | used it as an umbrella for my activities.

Richard Bellman, Eye of the Hurricane: an Autobiography
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Summary of Lectures 1-2 (so far)

= Many problems of practical importance can be
formulated as optimization problems

= Greedy algorithms often provide adequate (though
not necessarily optimal) solutions

= Finding an optimal solution is usually exponentially
hard

= But dynamic programming often yields good
performance for a subclass of optimization problems—
those with optimal substructure and overlapping
subproblems

> Solution always correct
o Fast under the right circumstances
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Since | Have a Few Minutes, more Python

= Conditional expressions

= List comprehension
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Conditional Expressions

el if ¢ else e2

1) Evaluate c
2) If cis True, the value of the expression is el
3) If cif False, the value of the expression is e2

x/y if y =0 else None
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List Comprehension

—
|

[expression for item in L if conditional]

L = []
for item in list:
if conditional:

L.append(expression)
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List Comprehension

L = [ixi for i in range(10)]

L = []
for i in range(10):
L.append(ixi)
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List Comprehension

L = [ixx2 for i in range(10) if i%2 != 0]

sentence = '6.0002 is the greatest'’
L = [word[@] for word in sentence.split(' ')]
print(L)

D = {word[@]:sentence.count(word[0])\
for word in sentence.split(' ')}
print(D)
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Today’s Puzzler

def getSomething(n):
return [p for p in range(2, n+1)\
if @ not in [p%d for d in range(2, p)]]

print([x for x in range(101) if x not in\

({i+1:getSomething(101) [i]\
for i in range(len(getSomething(101)))}).values()])
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