STRINGS,
BRANCHING,
I TERATION

(download slides and .py files to follow along!)
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LAST TIME

= Syntax and semantics

= Scalar objects

= Simple operations

= Expressions, variables and values
" |nput & output

= Branching and conditionals

= Indentation
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TODAY

= Recap of assignment, branching

= String object type
= |[teration and loops

= Guess-and-check algorithms
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Assigned Reading

= Sections 2.3, 2.4
= Sections 3.1, 3.2

"I—’ntroduction to

siHQ', Pinhon

,.'Iication to Und}rséding Data

/econ. edition 7 4

John V. Gu
/' J7 4
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TYPES OF OBJECTS (RECAP)

= Variables and expressions
°1nt
cfloat
°bool
° NoneType
°cstring € New
o ... and others we will see later




VARIABLES (RECAP)

= Need a way to refer to computed values abstractly —
give them a “name”

" name
o descriptive
o meaningful
> helps you re-read code
> should not be keywords

= value
o information stored

° can be updated
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STRINGS (RECAP)

= Made up from letters, special characters, spaces, digits

= Think of as a sequence of case sensitive characters

" Enclose in quotation marks or single quotes
today = 'Monday'

= Concatenate strings

this = "it is"
what = this + today
what = this + " " + today

= Do some operations on a string as defined in Python docs
announce = "It's " 4+ today * 3
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OPERATOR OVERLOAD

= Same operator used on different object types

= + operator
o E.g. Between two numbers: adds

o E.g. Between two strings: concatenates

= * operator
o E.g. Between two numbers: multiplies
o E.g. Between a number and a string: repeats the string

9/9/2019 6.0001 LECTURE 2




STRING OPERATIONS

= Can compare strings with ==, >, < etc.

" len () is a function used to retrieve the length of the
string in the parentheses

s = "abc"

len(s) => evaluatesto3




STRINGS

= Square brackets used to perform indexing into a string
to get the value at a certain index/position

s = "abc"
index: 0 1 2 < indexing always starts at O

index: -3-2-1 < last element always at index -1
[0 evaluates to "a"
evaluates to "b"
evaluates to "c"
trying to index out of bounds, error
evaluates to "c"
evaluates to "b"

evaluates to "a"

V)
"\ 2222\
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STRINGS

= Can slice strings using [start:stop:step]

" |f give two numbers, [start :stop], step=1 by default
= Get characters at start until stop-1

" You can also omit numbers and leave just colons
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¥¢ LIVE EXERCISE

SLICING STRINGS EXAMPLE

4
«\\3‘50(:(‘\\‘
- " h ~ " oS \)(e N does‘so\e\
- "abCHeffgh
. CO((\- \‘O\)
index: 01 2 3 45 67 e
index: -8 -7 -6-5-4-3 -2-1 o
: 0] — evaluatesto "def",sameas s[3:6:1]
:6:2] - evaluatesto "df"
2] - evaluates to "abcdefgh",sameass[0:len(s) : 1]

::-1] > evaluatesto "hgfedbca", sameas s[-1:-(len(s)+1) :-1]

:1:-2]-> evaluatesto "ec"
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http://bit.ly/60001-13

STRINGS

= Strings are “immutable” — cannot be modified

s = "car"
s[0] = '"b" —> gives an error
s = '"b'+s[l:1len(s)] - is allowed,

s bound to new object

<
——

=
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BOOLS (RECAP)

= Boolean values
o True

o False

= Useful with conditions

> |n branching:
If it’s hot, go to the beach, otherwise stay at home.

o |n repetitions
As long as it’s sunny, keep eating ice cream.
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S

If right clear, If right blocked, If right and If right , front,
go right go forward front blocked, left blocked,
go left go back




BRANCHING

1f <condition>:
<expression>
<expression>

1f <condition>:
<expression>
<expression>

else:
<expression>
<expression>

1f <condition>:
<expression>
<expression>

elif <condition>:
<expression>
<expression>

else:
<expression>
<expression>

" <condition>hasavalue Trueor False

= Evaluate expressions in that block if <condition> is True

9/9/2019
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¥¢ LIVE EXERCISE

INDENTATION

= Matters in Python

* How you denote blocks of code

x = float (input ("Enter a number for x: ")) 5 5 0

y = float (input ("Enter a number for y: ")) 5 0 0

if x == vy: True False True
print ("x and y are equal") <- <-
if y !'= 0: True False

print ("therefore, x / y is", x/vy) <-

elif x < y: False
print ("x 1s smaller")

else:
print ("y 1s smaller") <-

print ("thanks!") <- <- <-
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http://bit.ly/60001-10

IIIBIIIIIIIIIIIF . £ 7alda —
3333333333333333 egend of Zelda

290009082 VVVVBVBY  Lost Woods

RERRREBRRRREEERRE N Keep going right,
a3l takes you back to this
AIIIIIIIIIIIIIND same screen, stuck in

a loop

1f <exit right>:
<set background to woods background>
1f <exit right>:
<set Dbackground to woods background>
1f <exit right>:
<set background to woods background>
and so on and on and on...
else:
<set background to exit background>
else:
<set background to exit background>
else:

<set background to exit background>
- — ]
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2000000000088888 - | cgend of Zelda
33033333333330333 o0
3333333333333

RERRREBRERRREEERIRE N Keep going right,
& takes you back to this
SS00000VBVVVVVBNYY  SAMescreen, stuck in

a loop

while <exit right>:
<set background to woods background>
<set background to exit background>
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CONTROL FLOW:
while LOOPS

while <condition>:

<expression>
<expression>

" <condition> evaluates to a Boolean

" If <condition> is True, execute all the steps inside the
while code block

" Check <condition> again
" Repeat until <condition> isFalse

" [f <condition> is never False, then will loop forever!!
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¥¢ LIVE EXERCISE

while LOOP EXAMPLE

You are 1in the Lost Forest.
P O b i A i i i i i b i g

R R b i b i b b i i b ¢

©

kkhkkhkkhkhkkk KKKk kK

LA R A b b b b b b b b ¢

Go left or right?

PROGRAM:
where = input("You're in the Lost Forest. Go left or right? ")
while where == "right":

where = input("You're in the Lost Forest. Go left or right? ")

print ("You got out of the Lost Forest!")
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http://bit.ly/60001-11

CONTROL FLOW:

~or LOOPS

while and:

" |[terate through numbers in a sequence

# more complicated with while loop

n =0 Set loop variable outside while loop
while : Test loop variable in condition
print (n)
[ n = n+tl ] Increment I(?op variable inside while loop
n =n+1 equivalentton+=1

# shortcut with for loop

for n 1n range(5):
print (n)
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CONTROL FLOW: for LOOPS

for <variable> in range (<some num>) :
<expression>
<expression>

= Each time through the loop, <variable> takes avalue
= First time, <variable> starts at the smallest value
= Next time, <variable> getsthe prevvalue +1

= etc. until <variable> getssome_num -1
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range (start, stop, step)

" Default values are start = Oand step = 1 and optional

" Loop until value reaches stop - 1

mysum = 0

for 1 in range (7, 10):
mysum += 1

print (mysum)

mysum = 0

for 1 in range (5, 11, 2):
mysum += 1

print (mysum)

9/9/2019 6.0001 LECTURE 2




break STATEMENT

" Immediately exits whatever loop itis in

= Skips remaining expressions in code block

= Exits only innermost loop!

while <condition 1>:

while <conditilion 2>:

Evaluated when

[<expres sion_a~ ] <condition_1> and <condition_2> are True

break

[<expres sion b> ] Never evaluated

[ <express ion_C> ] Evaluated when <condition_1> is True
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¥¢ LIVE EXERCISE

break STATEMENT

mysum = 0

for 1 in range (b, 11, 2):
mysum += 1
1f mysum == 5:
break
mysum += 1

print (mysum)

= What happens in this program?



http://bit.ly/60001-12

for VS

while LOOPS

for loops

= know number of
iterations

= can end early via
break

" uses a counter

= can rewrite a for loop
usingawhile loop

while loops

= unbounded number of
iterations

" can end early via break

" can use a counter but
must initialize before loop
and increment it inside loop

" may not be able to
rewrite a while loop using
a for loop
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STRINGS AND LOOPS

s = "demo loops — fruit loops"

for index in range(len(s)):

1f s[index] == '"1' or s[index] == 'u':
rint ("There 1s an 1 or u")
P . Code 66((\6
e S
S N 30 K (\e\
, 07 koY O,
for char in s: 00° O ¢
QNpngo,«@°
. ]
if char == '"1' or char == 'u': Q&°€;Q*
@

print ("There 1s an 1 or u")
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CODE EXAMPLE:
ROBOT CHEERLEADERS

an letters = "aefhilmnorsxAEFHILMNORSX"
word = input ("I will cheer for you! Enter a word: ")
times = int (input ("Enthusiasm level (1-10): "))

for char in word:
1f char in an letters:
print ("Give me an " + char + "! " + char)
else:
print ("Give me a " + char + "! " 4+ char)

print ("What does that spell?")
for 1 in range(times) :
print (word, "!!!™)
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Five Minute Break

Just keep umm'lmhulmtu
Just keep coding, coding, coding_

Trying to fix my code
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ALGORITHMS

|(GUESS-and-CHECK |

BISECTION SEARCH
APPROXIMATION




GUESS-AND-CHECK

= Process called exhaustive enumeration

= Applies to a problem where ...
> You are able to guess a value for solution

> You are able to check if the solution is correct
> You can keep guessing until

> Find solution or

> Have guessed all values
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GUESS-AND-CHECK
— square root

= Basic idea:

o Given an int, call it x, want to see if there is another int
which is its square root

o Start with a guess and check if it is the right answer
> To be systematic, start with guess =0, then 1, then 2, etc

" If x is a perfect square, we will eventually find its root
and can stop

But what if x is not a perfect square?
> Need to know when to stop

o Use algebra — if guess squared is bigger than x, then can
stop
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GUESS-AND-CHECK
— square root

guess = 0
X = 1nt (input ("Enter an integer: "))
eQ
while guess**2 < x: &ﬂwwé$
?:I;\\,\ ¥ 7
guess = guess + 1 @ﬁé
1f guess**2 == x:

print ("Square root of", x, "i1s", guess)
else:

print (x, "i1s not a perfect square")
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GUESS-AND-CHECK
— square root

= Does this work for any integer value of x?

= What if x is negative?
o while loop immediately terminates

= Could check for negative input, and handle differently
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GUESS-AND-CHECK
— square root

guess = 0

neg flag = False

x = 1int (input ("Enter a positive integer: "))

if x < 03
X neg flag = True
while guess**2 < x:

guess = guess + 1
1f guess**2 == x:
print ("Square root of", x, "is", guess)
else:
print (x, "is not a perfect square")
1f neg flag:
[ print ("Just checking... did you mean", -x, "?"J
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while LOOP OR :

~or LOOP?

= Already saw that code looks cleaner when iterating

over sequence of values
o Don’t set up the iterant yourself
o Less likely to introduce errors

as with a while loop

= Consider an example that usesa for loop and an

explicit range of values
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GUESS-AND-CHECK
— cube root

cube = int (input ("Enter an integer: ")) <O
X
«e%e
e
for guess in range (): eV J0°
ﬁ“quﬁc
if guess**3 == cube: QQ»

print ("Cube root of", cube, "1s", guess)
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GUESS-AND-CHECK
— cube root

cube = int (input ("Enter an integer: "))
\e>
~ \\’5(\6 XN
for guess 1in range(%bs(cube)+l): @ﬁﬂ&géﬁ
< e O o)
if guess**3 == Fbs(cube): {Wﬁq(o&ﬁ
) \)2
if cube < 0: A oy @gs
: .\(\xe
guess = -guess

print ("Cube root of "+str (cube)+" 1s "+str (guess))

September 9, 2019
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GUESS-AND-CHECK
— cube root

cube = int (input ("Enter an integer: ")) dNﬁ
for guess in range (abs (cube)+1): ‘Qéﬁiegﬁﬁ
-\(\’6 o)
if guess**3 >= abs (cube) : <t ©° we'
wﬁﬁy\ea
break Qdﬁm
1f guess**3 != abs (cube):

print (cube, "i1s not a perfect cube")

else:
1f cube < 0:
guess = —guess

print ("Cube root of "+str(cube)+" 1s "+str (guess))

September 9, 2019
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ANOTHER EXAMPLE

= Remember those word problems from your
childhood?

= For example:
> Alyssa, Ben, and Cindy are selling tickets to a fundraiser
o Ben sells 20 fewer than Alyssa
> Cindy sells twice as many as Alyssa
> 1000 total tickets were sold by the three people
> How many did Alyssa sell?

= Could solve this algebraically, but we can also use
guess-and-check
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GUESS-AND-CHECK WORD
PROBLEM

for alyssa in range (1001) :

ben = max(alyssa - 20, 0)
cindy = alyssa * 2
1f ben + cindy + alyssa == 1000:

print ("Alyssa sold " + str(alyssa) + " tickets")

print ("Ben sold " + str(ben) + " tickets")

print ("Cindy sold " + str(cindy) + " tickets™")




SUMMARY

= Strings provide a new data type
o Strings can be indexed and sliced

o Strings are immutable

= Looping mechanisms
cwhile and for loops
> Can loop over ranges of numbers
o Can loop over elements of a string

= Exhaustive search (aka guess-and-check) provides a
simple algorithm for solving problems where the set of
potential solutions is enumerable
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