
STRINGS, 
BRANCHING, 
ITERATION
(download slides and .py files to follow along!)
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LAST TIME
 Syntax and semantics

 Scalar objects

 Simple operations

 Expressions, variables and values

 Input & output

 Branching and conditionals

 Indentation
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TODAY
 Recap of assignment, branching

 String object type

 Iteration and loops

 Guess-and-check algorithms
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Assigned Reading
 Sections 2.3, 2.4

 Sections 3.1, 3.2
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TYPES OF OBJECTS (RECAP)
 Variables and expressions
◦ int
◦ float
◦ bool
◦ NoneType
◦ string  New 
◦ … and others we will see later
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VARIABLES (RECAP)
 Need a way to refer to computed values abstractly –
give them a “name”
 name
◦ descriptive
◦ meaningful
◦ helps you re-read code
◦ should not be keywords

 value
◦ information stored
◦ can be updated 
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STRINGS (RECAP)
Made up from letters, special characters, spaces, digits

 Think of as a sequence of case sensitive characters

 Enclose in quotation marks or single quotes
today = 'Monday'

 Concatenate strings
this = "it is"
what = this + today
what = this + " " + today

 Do some operations on a string as defined in Python docs
announce = "It's " + today * 3
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OPERATOR OVERLOAD
 Same operator used on different object types

 + operator
◦ E.g. Between two numbers: adds
◦ E.g. Between two strings: concatenates

 * operator
◦ E.g. Between two numbers: multiplies
◦ E.g. Between a number and a string: repeats the string
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STRING OPERATIONS
 Can compare strings with ==, >, < etc.

 len() is a function used to retrieve the length of the 
string in the parentheses

s = "abc"

len(s)  evaluates to 3
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STRINGS
 Square brackets used to perform indexing into a string 
to get the value at a certain index/position
s = "abc"

s[0]  evaluates to "a"
s[1]  evaluates to "b"
s[2]  evaluates to "c"
s[3]  trying to index out of bounds, error
s[-1]  evaluates to "c"
s[-2]  evaluates to "b"
s[-3]  evaluates to "a"
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index:        0  1  2      indexing always starts at 0
index:       -3 -2 -1     last element always at index -1
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STRINGS
 Can slice strings using [start:stop:step]

 If give two numbers, [start:stop], step=1 by default

 Get characters at start until stop-1

 You can also omit numbers and leave just colons

6.0001 LECTURE 2 119/9/2019



SLICING STRINGS EXAMPLE
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s = "abcdefgh"

s[3:6]  evaluates to "def", same as s[3:6:1]

s[3:6:2]  evaluates to "df"

s[::]  evaluates to "abcdefgh", same as s[0:len(s):1]

s[::-1]  evaluates to "hgfedbca", same as s[-1:-(len(s)+1):-1]

s[4:1:-2] evaluates to "ec"

index:        0   1    2    3    4   5    6   7
index:       -8   -7  -6  -5  -4  -3   -2  -1

LIVE EXERCISE

http://bit.ly/60001-13


STRINGS
 Strings are “immutable” – cannot be modified 

s = "car"

s[0] = 'b'  gives an error
s = 'b'+s[1:len(s)]  is allowed,

s bound to new object
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s

"car"

"bar"
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BOOLS (RECAP)
 Boolean values
◦ True
◦ False

 Useful with conditions
◦ In branching: 

If it’s hot, go to the beach, otherwise stay at home.
◦ In repetitions

As long as it’s sunny, keep eating ice cream.
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If right clear,
go right 

If right blocked,
go forward

If right and 
front blocked,

go left

If right , front, 
left blocked,

go back
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BRANCHING
if <condition>:

<expression>
<expression>
...

if <condition>:
<expression>
<expression>
...

else:
<expression>
<expression>
...

if <condition>:
<expression>
<expression>
...

elif <condition>:
<expression> 
<expression>
...

else:
<expression>
<expression>
...

 <condition> has a value True or False

 Evaluate expressions in that block if <condition> is True
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INDENTATION
Matters in Python
 How you denote blocks of code
x = float(input("Enter a number for x: "))
y = float(input("Enter a number for y: "))
if x == y:

print("x and y are equal")
if y != 0:

print("therefore, x / y is", x/y)
elif x < y:

print("x is smaller")
else:

print("y is smaller")
print("thanks!")
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 Legend of Zelda –
Lost Woods

 Keep going right, 
takes you back to this 
same screen, stuck in 
a loop

if <exit right>:
<set background to woods_background>
if <exit right>:

<set background to woods_background>
if <exit right>:

<set background to woods_background>
and so on and on and on...

else:
<set background to exit_background>

else:
<set background to exit_background>

else:
<set background to exit_background>
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while <exit right>:
<set background to woods_background>

<set background to exit_background>
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 Legend of Zelda –
Lost Woods

 Keep going right, 
takes you back to this 
same screen, stuck in 
a loop
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CONTROL FLOW: 
while LOOPS
while <condition>:

<expression>
<expression>
...

 <condition> evaluates to a Boolean

 If <condition> is True, execute all the steps inside the 
while code block

 Check <condition> again

 Repeat until <condition> is False

 If <condition> is never False, then will loop forever!!
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while LOOP EXAMPLE
You are in the Lost Forest.
************
************


************
************
Go left or right?

PROGRAM:

where = input("You're in the Lost Forest. Go left or right? ")

while where == "right":

where = input("You're in the Lost Forest. Go left or right? ")

print("You got out of the Lost Forest!")
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LIVE EXERCISE
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CONTROL FLOW: 
while and for LOOPS
 Iterate through numbers in a sequence

# more complicated with while loop
n = 0
while n < 5:

print(n)
n = n+1

# shortcut with for loop
for n in range(5):

print(n)
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Set loop variable outside while loop

Increment loop variable inside while loop
n = n+1 equivalent to n += 1

Test loop variable in condition



CONTROL FLOW: for LOOPS
for <variable> in range(<some_num>):

<expression>
<expression> 
...

 Each time through the loop, <variable> takes a value

 First time, <variable> starts at the smallest value

 Next time, <variable> gets the prev value + 1

 etc. until <variable> gets some_num -1
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range(start,stop,step)
 Default values are start = 0 and step = 1 and optional
 Loop until value reaches stop - 1 

mysum = 0
for i in range(7, 10):

mysum += i
print(mysum)

mysum = 0
for i in range(5, 11, 2):

mysum += i
print(mysum)
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break STATEMENT
 Immediately exits whatever loop it is in
 Skips remaining expressions in code block
 Exits only innermost loop!

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>

6.0001 LECTURE 2 259/9/2019

Evaluated when 
<condition_1> and <condition_2> are True

Never evaluated

Evaluated when <condition_1> is True



break STATEMENT
mysum = 0

for i in range(5, 11, 2):

mysum += i

if mysum == 5:

break

mysum += 1

print(mysum)

What happens in this program? 
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LIVE EXERCISE
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for VS while LOOPS
for loops

 know number of 
iterations

 can end early via 
break

 uses a counter

 can rewrite a for loop 
using a while loop

while loops
 unbounded number of 
iterations
 can end early via break
 can use a counter but 
must initialize before loop 
and increment it inside loop
may not be able to 
rewrite a while loop using 
a for loop
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STRINGS AND LOOPS

s = "demo loops – fruit loops"

for index in range(len(s)):

if s[index] == 'i' or s[index] == 'u':

print("There is an i or u")

for char in s:

if char == 'i' or char == 'u':

print("There is an i or u")
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CODE EXAMPLE:
ROBOT CHEERLEADERS
an_letters = "aefhilmnorsxAEFHILMNORSX"

word = input("I will cheer for you! Enter a word: ")
times = int(input("Enthusiasm level (1-10): "))

for char in word:
if char in an_letters:

print("Give me an " + char + "! " + char)
else:

print("Give me a  " + char + "! " + char)

print("What does that spell?")
for i in range(times):

print(word, "!!!")
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Five Minute Break
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Trying to fix my code
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GUESS-AND-CHECK
 Process called exhaustive enumeration

 Applies to a problem where …
◦ You are able to guess a value for solution
◦ You are able to check if the solution is correct
◦ You can keep guessing until 
◦ Find solution or
◦ Have guessed all values
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GUESS-AND-CHECK 
– square root 
 Basic idea:
◦ Given an int, call it x, want to see if there is another int

which is its square root
◦ Start with a guess and check if it is the right answer
◦ To be systematic, start with guess = 0, then 1, then 2, etc

 If x is a perfect square, we will eventually find its root 
and can stop
 But what if x is not a perfect square?  
◦ Need to know when to stop
◦ Use algebra – if guess squared is bigger than x, then can 

stop
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GUESS-AND-CHECK 
– square root 
guess = 0

x = int(input("Enter an integer: "))

while guess**2 < x:

guess = guess + 1

if guess**2 == x:

print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")
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GUESS-AND-CHECK 
– square root 
 Does this work for any integer value of x?

What if x is negative?
◦ while loop immediately terminates

 Could check for negative input, and handle differently
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GUESS-AND-CHECK 
– square root 
guess = 0

neg_flag = False

x = int(input("Enter a positive integer: "))

if x < 0:

neg_flag = True

while guess**2 < x:

guess = guess + 1

if guess**2 == x:

print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")

if neg_flag:

print("Just checking... did you mean", -x, "?")
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while LOOP OR for LOOP?
 Already saw that code looks cleaner when iterating 
over sequence of values 
◦ Don’t set up the iterant yourself as with a while loop
◦ Less likely to introduce errors 

 Consider an example that uses a for loop and an 
explicit range of values
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GUESS-AND-CHECK 
– cube root

cube = int(input("Enter an integer: "))

for guess in range(cube+1):

if guess**3 == cube:

print("Cube root of", cube, "is", guess)
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GUESS-AND-CHECK 
– cube root

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 == abs(cube):

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))
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GUESS-AND-CHECK 
– cube root

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 >= abs(cube):

break

if guess**3 != abs(cube):

print(cube, "is not a perfect cube")

else:

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))
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ANOTHER EXAMPLE
 Remember those word problems from your 
childhood?
 For example:
◦ Alyssa, Ben, and Cindy are selling tickets to a fundraiser
◦ Ben sells 20 fewer than Alyssa
◦ Cindy sells twice as many as Alyssa
◦ 1000 total tickets were sold by the three people
◦ How many did Alyssa sell?

 Could solve this algebraically, but we can also use 
guess-and-check
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GUESS-AND-CHECK WORD 
PROBLEM

for alyssa in range(1001):

ben = max(alyssa - 20, 0)

cindy = alyssa * 2

if ben + cindy + alyssa == 1000:

print("Alyssa sold " + str(alyssa) + " tickets")

print("Ben sold " + str(ben) + " tickets")

print("Cindy sold " + str(cindy) + " tickets")
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SUMMARY
 Strings provide a new data type
◦ Strings can be indexed and sliced
◦ Strings are immutable

 Looping mechanisms
◦ while and for loops
◦ Can loop over ranges of numbers
◦ Can loop over elements of a string

 Exhaustive search (aka guess-and-check) provides a 
simple algorithm for solving problems where the set of 
potential solutions is enumerable
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