
STRINGS,
BRANCHING,
ITERATION
(download slides and .py files to follow along!)

6.0001 LECTURE 2

6.0001 LECTURE 2 19/9/2019

LAST TIME
 Syntax and semantics

 Scalar objects

 Simple operations

 Expressions, variables and values

 Input & output

 Branching and conditionals

 Indentation

6.0001 LECTURE 2 29/9/2019

TODAY
 Recap of assignment, branching

 String object type

 Iteration and loops

 Guess-and-check algorithms

6.0001 LECTURE 2 39/9/2019

Assigned Reading
 Sections 2.3, 2.4

 Sections 3.1, 3.2

6.0001 LECTURE 1 4

TYPES OF OBJECTS (RECAP)
 Variables and expressions
◦ int
◦ float
◦ bool
◦ NoneType
◦ string  New
◦ … and others we will see later

6.0001 LECTURE 2 59/9/2019

VARIABLES (RECAP)
 Need a way to refer to computed values abstractly –
give them a “name”
 name
◦ descriptive
◦ meaningful
◦ helps you re-read code
◦ should not be keywords

 value
◦ information stored
◦ can be updated

6.0001 LECTURE 2 69/9/2019

STRINGS (RECAP)
Made up from letters, special characters, spaces, digits

 Think of as a sequence of case sensitive characters

 Enclose in quotation marks or single quotes
today = 'Monday'

 Concatenate strings
this = "it is"
what = this + today
what = this + " " + today

 Do some operations on a string as defined in Python docs
announce = "It's " + today * 3

6.0001 LECTURE 2 79/9/2019

OPERATOR OVERLOAD
 Same operator used on different object types

 + operator
◦ E.g. Between two numbers: adds
◦ E.g. Between two strings: concatenates

 * operator
◦ E.g. Between two numbers: multiplies
◦ E.g. Between a number and a string: repeats the string

6.0001 LECTURE 2 89/9/2019

STRING OPERATIONS
 Can compare strings with ==, >, < etc.

 len() is a function used to retrieve the length of the
string in the parentheses

s = "abc"

len(s)  evaluates to 3

6.0001 LECTURE 2 99/9/2019

STRINGS
 Square brackets used to perform indexing into a string
to get the value at a certain index/position
s = "abc"

s[0]  evaluates to "a"
s[1]  evaluates to "b"
s[2]  evaluates to "c"
s[3]  trying to index out of bounds, error
s[-1]  evaluates to "c"
s[-2]  evaluates to "b"
s[-3]  evaluates to "a"

6.0001 LECTURE 2 10

index: 0 1 2  indexing always starts at 0
index: -3 -2 -1  last element always at index -1

9/9/2019

STRINGS
 Can slice strings using [start:stop:step]

 If give two numbers, [start:stop], step=1 by default

 Get characters at start until stop-1

 You can also omit numbers and leave just colons

6.0001 LECTURE 2 119/9/2019

SLICING STRINGS EXAMPLE

9/9/2019 6.0001 LECTURE 2 12

s = "abcdefgh"

s[3:6]  evaluates to "def", same as s[3:6:1]

s[3:6:2]  evaluates to "df"

s[::]  evaluates to "abcdefgh", same as s[0:len(s):1]

s[::-1]  evaluates to "hgfedbca", same as s[-1:-(len(s)+1):-1]

s[4:1:-2] evaluates to "ec"

index: 0 1 2 3 4 5 6 7
index: -8 -7 -6 -5 -4 -3 -2 -1

LIVE EXERCISE

http://bit.ly/60001-13

STRINGS
 Strings are “immutable” – cannot be modified

s = "car"

s[0] = 'b'  gives an error
s = 'b'+s[1:len(s)]  is allowed,

s bound to new object

6.0001 LECTURE 2 13

s

"car"

"bar"

9/9/2019

BOOLS (RECAP)
 Boolean values
◦ True
◦ False

 Useful with conditions
◦ In branching:

If it’s hot, go to the beach, otherwise stay at home.
◦ In repetitions

As long as it’s sunny, keep eating ice cream.

9/9/2019 6.0001 LECTURE 2 14

If right clear,
go right

If right blocked,
go forward

If right and
front blocked,

go left

If right , front,
left blocked,

go back

6.0001 LECTURE 2 159/9/2019

BRANCHING
if <condition>:

<expression>
<expression>
...

if <condition>:
<expression>
<expression>
...

else:
<expression>
<expression>
...

if <condition>:
<expression>
<expression>
...

elif <condition>:
<expression>
<expression>
...

else:
<expression>
<expression>
...

 <condition> has a value True or False

 Evaluate expressions in that block if <condition> is True

6.0001 LECTURE 2 169/9/2019

INDENTATION
Matters in Python
 How you denote blocks of code
x = float(input("Enter a number for x: "))
y = float(input("Enter a number for y: "))
if x == y:

print("x and y are equal")
if y != 0:

print("therefore, x / y is", x/y)
elif x < y:

print("x is smaller")
else:

print("y is smaller")
print("thanks!")

6.0001 LECTURE 2 179/9/2019

5
5
True
<-
True
<-

<-

5
0
False

False

<-
<-

0
0
True
<-
False

<-

LIVE EXERCISE

http://bit.ly/60001-10

 Legend of Zelda –
Lost Woods

 Keep going right,
takes you back to this
same screen, stuck in
a loop

if <exit right>:
<set background to woods_background>
if <exit right>:

<set background to woods_background>
if <exit right>:

<set background to woods_background>
and so on and on and on...

else:
<set background to exit_background>

else:
<set background to exit_background>

else:
<set background to exit_background>

6.0001 LECTURE 2 189/9/2019

while <exit right>:
<set background to woods_background>

<set background to exit_background>

6.0001 LECTURE 2 19

 Legend of Zelda –
Lost Woods

 Keep going right,
takes you back to this
same screen, stuck in
a loop

9/9/2019

CONTROL FLOW:
while LOOPS
while <condition>:

<expression>
<expression>
...

 <condition> evaluates to a Boolean

 If <condition> is True, execute all the steps inside the
while code block

 Check <condition> again

 Repeat until <condition> is False

 If <condition> is never False, then will loop forever!!

6.0001 LECTURE 2 209/9/2019

while LOOP EXAMPLE
You are in the Lost Forest.



Go left or right?

PROGRAM:

where = input("You're in the Lost Forest. Go left or right? ")

while where == "right":

where = input("You're in the Lost Forest. Go left or right? ")

print("You got out of the Lost Forest!")

6.0001 LECTURE 2 219/9/2019

LIVE EXERCISE

http://bit.ly/60001-11

CONTROL FLOW:
while and for LOOPS
 Iterate through numbers in a sequence

more complicated with while loop
n = 0
while n < 5:

print(n)
n = n+1

shortcut with for loop
for n in range(5):

print(n)

6.0001 LECTURE 2 229/9/2019

Set loop variable outside while loop

Increment loop variable inside while loop
n = n+1 equivalent to n += 1

Test loop variable in condition

CONTROL FLOW: for LOOPS
for <variable> in range(<some_num>):

<expression>
<expression>
...

 Each time through the loop, <variable> takes a value

 First time, <variable> starts at the smallest value

 Next time, <variable> gets the prev value + 1

 etc. until <variable> gets some_num -1

6.0001 LECTURE 2 239/9/2019

range(start,stop,step)
 Default values are start = 0 and step = 1 and optional
 Loop until value reaches stop - 1

mysum = 0
for i in range(7, 10):

mysum += i
print(mysum)

mysum = 0
for i in range(5, 11, 2):

mysum += i
print(mysum)

6.0001 LECTURE 2 249/9/2019

break STATEMENT
 Immediately exits whatever loop it is in
 Skips remaining expressions in code block
 Exits only innermost loop!

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>

6.0001 LECTURE 2 259/9/2019

Evaluated when
<condition_1> and <condition_2> are True

Never evaluated

Evaluated when <condition_1> is True

break STATEMENT
mysum = 0

for i in range(5, 11, 2):

mysum += i

if mysum == 5:

break

mysum += 1

print(mysum)

What happens in this program?

6.0001 LECTURE 2 269/9/2019

LIVE EXERCISE

http://bit.ly/60001-12

for VS while LOOPS
for loops

 know number of
iterations

 can end early via
break

 uses a counter

 can rewrite a for loop
using a while loop

while loops
 unbounded number of
iterations
 can end early via break
 can use a counter but
must initialize before loop
and increment it inside loop
may not be able to
rewrite a while loop using
a for loop

6.0001 LECTURE 2 279/9/2019

STRINGS AND LOOPS

s = "demo loops – fruit loops"

for index in range(len(s)):

if s[index] == 'i' or s[index] == 'u':

print("There is an i or u")

for char in s:

if char == 'i' or char == 'u':

print("There is an i or u")

6.0001 LECTURE 2 28September 9, 2019

CODE EXAMPLE:
ROBOT CHEERLEADERS
an_letters = "aefhilmnorsxAEFHILMNORSX"

word = input("I will cheer for you! Enter a word: ")
times = int(input("Enthusiasm level (1-10): "))

for char in word:
if char in an_letters:

print("Give me an " + char + "! " + char)
else:

print("Give me a " + char + "! " + char)

print("What does that spell?")
for i in range(times):

print(word, "!!!")

6.0001 LECTURE 2 29September 9, 2019

Five Minute Break

6.0001 LECTURE 2 30

Trying to fix my code

September 9, 2019 6.0001 LECTURE 2 31

ALGORITHMS

GUESS-AND-CHECK
 Process called exhaustive enumeration

 Applies to a problem where …
◦ You are able to guess a value for solution
◦ You are able to check if the solution is correct
◦ You can keep guessing until
◦ Find solution or
◦ Have guessed all values

September 9, 2019 6.0001 LECTURE 2 32

GUESS-AND-CHECK
– square root
 Basic idea:
◦ Given an int, call it x, want to see if there is another int

which is its square root
◦ Start with a guess and check if it is the right answer
◦ To be systematic, start with guess = 0, then 1, then 2, etc

 If x is a perfect square, we will eventually find its root
and can stop
 But what if x is not a perfect square?
◦ Need to know when to stop
◦ Use algebra – if guess squared is bigger than x, then can

stop

6.0001 LECTURE 2 339/9/2019

GUESS-AND-CHECK
– square root
guess = 0

x = int(input("Enter an integer: "))

while guess**2 < x:

guess = guess + 1

if guess**2 == x:

print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")

6.0001 LECTURE 2 349/9/2019

GUESS-AND-CHECK
– square root
 Does this work for any integer value of x?

What if x is negative?
◦ while loop immediately terminates

 Could check for negative input, and handle differently

9/9/2019 6.0001 LECTURE 2 35

GUESS-AND-CHECK
– square root
guess = 0

neg_flag = False

x = int(input("Enter a positive integer: "))

if x < 0:

neg_flag = True

while guess**2 < x:

guess = guess + 1

if guess**2 == x:

print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")

if neg_flag:

print("Just checking... did you mean", -x, "?")

6.0001 LECTURE 2 369/9/2019

while LOOP OR for LOOP?
 Already saw that code looks cleaner when iterating
over sequence of values
◦ Don’t set up the iterant yourself as with a while loop
◦ Less likely to introduce errors

 Consider an example that uses a for loop and an
explicit range of values

9/9/2019 6.0001 LECTURE 2 37

GUESS-AND-CHECK
– cube root

cube = int(input("Enter an integer: "))

for guess in range(cube+1):

if guess**3 == cube:

print("Cube root of", cube, "is", guess)

September 9, 2019 6.0001 LECTURE 2 38

GUESS-AND-CHECK
– cube root

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 == abs(cube):

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))

September 9, 2019 6.0001 LECTURE 2 39

GUESS-AND-CHECK
– cube root

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 >= abs(cube):

break

if guess**3 != abs(cube):

print(cube, "is not a perfect cube")

else:

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))

September 9, 2019 6.0001 LECTURE 2 40

ANOTHER EXAMPLE
 Remember those word problems from your
childhood?
 For example:
◦ Alyssa, Ben, and Cindy are selling tickets to a fundraiser
◦ Ben sells 20 fewer than Alyssa
◦ Cindy sells twice as many as Alyssa
◦ 1000 total tickets were sold by the three people
◦ How many did Alyssa sell?

 Could solve this algebraically, but we can also use
guess-and-check

9/9/2019 6.0001 LECTURE 2 41

GUESS-AND-CHECK WORD
PROBLEM

for alyssa in range(1001):

ben = max(alyssa - 20, 0)

cindy = alyssa * 2

if ben + cindy + alyssa == 1000:

print("Alyssa sold " + str(alyssa) + " tickets")

print("Ben sold " + str(ben) + " tickets")

print("Cindy sold " + str(cindy) + " tickets")

9/9/2019 6.0001 LECTURE 2 42

SUMMARY
 Strings provide a new data type
◦ Strings can be indexed and sliced
◦ Strings are immutable

 Looping mechanisms
◦ while and for loops
◦ Can loop over ranges of numbers
◦ Can loop over elements of a string

 Exhaustive search (aka guess-and-check) provides a
simple algorithm for solving problems where the set of
potential solutions is enumerable

9/9/2019 6.0001 LECTURE 2 43

	STRINGS, BRANCHING, ITERATION�(download slides and .py files to follow along!)
	LAST TIME
	TODAY
	Assigned Reading
	TYPES OF OBJECTS (RECAP)
	VARIABLES (RECAP)
	STRINGS (RECAP)
	OPERATOR OVERLOAD
	STRING OPERATIONS
	STRINGS
	STRINGS
	SLICING STRINGS EXAMPLE
	STRINGS
	BOOLS (RECAP)
	Slide Number 15
	BRANCHING
	INDENTATION
	Slide Number 18
	Slide Number 19
	CONTROL FLOW: �while LOOPS
	while LOOP EXAMPLE
	CONTROL FLOW: �while and for LOOPS
	CONTROL FLOW: for LOOPS
	range(start,stop,step)
	break STATEMENT
	break STATEMENT
	for 		VS 	while LOOPS
	STRINGS AND LOOPS
	CODE EXAMPLE:�ROBOT CHEERLEADERS
	Five Minute Break
	Slide Number 31
	GUESS-AND-CHECK
	GUESS-AND-CHECK �– square root
	GUESS-AND-CHECK �– square root
	GUESS-AND-CHECK �– square root
	GUESS-AND-CHECK �– square root
	while LOOP OR for LOOP?
	GUESS-AND-CHECK �– cube root
	GUESS-AND-CHECK �– cube root
	GUESS-AND-CHECK �– cube root
	ANOTHER EXAMPLE
	GUESS-AND-CHECK WORD PROBLEM
	SUMMARY

