STRINGS,
BRANCHING,
I TERATION

(download slides and .py files to follow along!)

6.0001 LECTURE 2

LAST TIME

= Syntax and semantics

= Scalar objects

= Simple operations

= Expressions, variables and values
" |nput & output

= Branching and conditionals

= Indentation

9/9/2019 6.0001 LECTURE 2

TODAY

= Recap of assignment, branching

= String object type
= |[teration and loops

= Guess-and-check algorithms

9/9/2019 6.0001 LECTURE 2

Assigned Reading

= Sections 2.3, 2.4
= Sections 3.1, 3.2

"I—’ntroduction to

siHQ', Pinhon

,.'Iication to Und}rséding Data

/econ. edition 7 4

John V. Gu
/' J7 4

6.0001 LECTURE 1

TYPES OF OBJECTS (RECAP)

= Variables and expressions
°1nt
cfloat
°bool
° NoneType
°cstring € New
o ... and others we will see later

VARIABLES (RECAP)

= Need a way to refer to computed values abstractly —
give them a “name”

" name
o descriptive
o meaningful
> helps you re-read code
> should not be keywords

= value
o information stored

° can be updated

9/9/2019 6.0001 LECTURE 2

STRINGS (RECAP)

= Made up from letters, special characters, spaces, digits

= Think of as a sequence of case sensitive characters

" Enclose in quotation marks or single quotes
today = 'Monday'

= Concatenate strings

this = "it is"
what = this + today
what = this + " " + today

= Do some operations on a string as defined in Python docs
announce = "It's " 4+ today * 3

9/9/2019 6.0001 LECTURE 2

OPERATOR OVERLOAD

= Same operator used on different object types

= + operator
o E.g. Between two numbers: adds

o E.g. Between two strings: concatenates

= * operator
o E.g. Between two numbers: multiplies
o E.g. Between a number and a string: repeats the string

9/9/2019 6.0001 LECTURE 2

STRING OPERATIONS

= Can compare strings with ==, >, < etc.

" len () is a function used to retrieve the length of the
string in the parentheses

s = "abc"

len(s) => evaluatesto3

STRINGS

= Square brackets used to perform indexing into a string
to get the value at a certain index/position

s = "abc"
index: 0 1 2 < indexing always starts at O

index: -3-2-1 < last element always at index -1
[0 evaluates to "a"
evaluates to "b"
evaluates to "c"
trying to index out of bounds, error
evaluates to "c"
evaluates to "b"

evaluates to "a"

V)
"\ 2222\

9/9/2019 6.0001 LECTURE 2

STRINGS

= Can slice strings using [start:stop:step]

" |f give two numbers, [start :stop], step=1 by default
= Get characters at start until stop-1

" You can also omit numbers and leave just colons

9/9/2019 6.0001 LECTURE 2

S

s[4

¥¢ LIVE EXERCISE

SLICING STRINGS EXAMPLE

4
«\\3‘50(:(‘\\‘
- " h ~ " oS \)(e N does‘so\e\
- "abCHeffgh
. CO((\- \‘O\)
index: 01 2 3 45 67 e
index: -8 -7 -6-5-4-3 -2-1 o
: 0] — evaluatesto "def",sameas s[3:6:1]
:6:2] - evaluatesto "df"
2] - evaluates to "abcdefgh",sameass[0:len(s) : 1]

::-1] > evaluatesto "hgfedbca", sameas s[-1:-(len(s)+1) :-1]

:1:-2]-> evaluatesto "ec"

9/9/2019 6.0001 LECTURE 2

http://bit.ly/60001-13

STRINGS

= Strings are “immutable” — cannot be modified

s = "car"
s[0] = '"b" —> gives an error
s = '"b'+s[l:1len(s)] - is allowed,

s bound to new object

<
——

=

9/9/2019 6.0001 LECTURE 2

BOOLS (RECAP)

= Boolean values
o True

o False

= Useful with conditions

> |n branching:
If it’s hot, go to the beach, otherwise stay at home.

o |n repetitions
As long as it’s sunny, keep eating ice cream.

9/9/2019 6.0001 LECTURE 2

S

If right clear, If right blocked, If right and If right , front,
go right go forward front blocked, left blocked,
go left go back

BRANCHING

1f <condition>:
<expression>
<expression>

1f <condition>:
<expression>
<expression>

else:
<expression>
<expression>

1f <condition>:
<expression>
<expression>

elif <condition>:
<expression>
<expression>

else:
<expression>
<expression>

" <condition>hasavalue Trueor False

= Evaluate expressions in that block if <condition> is True

9/9/2019

6.0001 LECTURE 2

¥¢ LIVE EXERCISE

INDENTATION

= Matters in Python

* How you denote blocks of code

x = float (input ("Enter a number for x: ")) 5 5 0

y = float (input ("Enter a number for y: ")) 5 0 0

if x == vy: True False True
print ("x and y are equal") <- <-
if y !'= 0: True False

print ("therefore, x / y is", x/vy) <-

elif x < y: False
print ("x 1s smaller")

else:
print ("y 1s smaller") <-

print ("thanks!") <- <- <-

9/9/2019 6.0001 LECTURE 2

http://bit.ly/60001-10

IIIBIIIIIIIIIIIF . £ 7alda —
3333333333333333 egend of Zelda

290009082 VVVVBVBY Lost Woods

RERRREBRRRREEERRE N Keep going right,
a3l takes you back to this
AIIIIIIIIIIIIIND same screen, stuck in

a loop

1f <exit right>:
<set background to woods background>
1f <exit right>:
<set Dbackground to woods background>
1f <exit right>:
<set background to woods background>
and so on and on and on...
else:
<set background to exit background>
else:
<set background to exit background>
else:

<set background to exit background>
- —]

9/9/2019 6.0001 LECTURE 2 18

2000000000088888 - | cgend of Zelda
33033333333330333 o0
3333333333333

RERRREBRERRREEERIRE N Keep going right,
& takes you back to this
SS00000VBVVVVVBNYY SAMescreen, stuck in

a loop

while <exit right>:
<set background to woods background>
<set background to exit background>

9/9/2019 6.0001 LECTURE 2 19

CONTROL FLOW:
while LOOPS

while <condition>:

<expression>
<expression>

" <condition> evaluates to a Boolean

" If <condition> is True, execute all the steps inside the
while code block

" Check <condition> again
" Repeat until <condition> isFalse

" [f <condition> is never False, then will loop forever!!

9/9/2019 6.0001 LECTURE 2

¥¢ LIVE EXERCISE

while LOOP EXAMPLE

You are 1in the Lost Forest.
P O b i A i i i i i b i g

R R b i b i b b i i b ¢

©

kkhkkhkkhkhkkk KKKk kK

LA R A b b b b b b b b ¢

Go left or right?

PROGRAM:
where = input("You're in the Lost Forest. Go left or right? ")
while where == "right":

where = input("You're in the Lost Forest. Go left or right? ")

print ("You got out of the Lost Forest!")

9/9/2019 6.0001 LECTURE 2

http://bit.ly/60001-11

CONTROL FLOW:

~or LOOPS

while and:

" |[terate through numbers in a sequence

more complicated with while loop

n =0 Set loop variable outside while loop
while : Test loop variable in condition
print (n)
[n = n+tl] Increment I(?op variable inside while loop
n =n+1 equivalentton+=1

shortcut with for loop

for n 1n range(5):
print (n)

9/9/2019 6.0001 LECTURE 2

CONTROL FLOW: for LOOPS

for <variable> in range (<some num>) :
<expression>
<expression>

= Each time through the loop, <variable> takes avalue
= First time, <variable> starts at the smallest value
= Next time, <variable> getsthe prevvalue +1

= etc. until <variable> getssome_num -1

9/9/2019 6.0001 LECTURE 2

range (start, stop, step)

" Default values are start = Oand step = 1 and optional

" Loop until value reaches stop - 1

mysum = 0

for 1 in range (7, 10):
mysum += 1

print (mysum)

mysum = 0

for 1 in range (5, 11, 2):
mysum += 1

print (mysum)

9/9/2019 6.0001 LECTURE 2

break STATEMENT

" Immediately exits whatever loop itis in

= Skips remaining expressions in code block

= Exits only innermost loop!

while <condition 1>:

while <conditilion 2>:

Evaluated when

[<expres sion_a~] <condition_1> and <condition_2> are True

break

[<expres sion b>] Never evaluated

[<express ion_C>] Evaluated when <condition_1> is True

9/9/2019 6.0001 LECTURE 2

¥¢ LIVE EXERCISE

break STATEMENT

mysum = 0

for 1 in range (b, 11, 2):
mysum += 1
1f mysum == 5:
break
mysum += 1

print (mysum)

= What happens in this program?

http://bit.ly/60001-12

for VS

while LOOPS

for loops

= know number of
iterations

= can end early via
break

" uses a counter

= can rewrite a for loop
usingawhile loop

while loops

= unbounded number of
iterations

" can end early via break

" can use a counter but
must initialize before loop
and increment it inside loop

" may not be able to
rewrite a while loop using
a for loop

9/9/2019 6.0001 LECTURE 2

STRINGS AND LOOPS

s = "demo loops — fruit loops"

for index in range(len(s)):

1f s[index] == '"1' or s[index] == 'u':
rint ("There 1s an 1 or u")
P . Code 66((\6
e S
S N 30 K (\e\
, 07 koY O,
for char in s: 00° O ¢
QNpngo,«@°
.]
if char == '"1' or char == 'u': Q&°€;Q*
@

print ("There 1s an 1 or u")

September 9, 2019 6.0001 LECTURE 2

CODE EXAMPLE:
ROBOT CHEERLEADERS

an letters = "aefhilmnorsxAEFHILMNORSX"
word = input ("I will cheer for you! Enter a word: ")
times = int (input ("Enthusiasm level (1-10): "))

for char in word:
1f char in an letters:
print ("Give me an " + char + "! " + char)
else:
print ("Give me a " + char + "! " 4+ char)

print ("What does that spell?")
for 1 in range(times) :
print (word, "!!!™)

September 9, 2019 6.0001 LECTURE 2

Five Minute Break

Just keep umm'lmhulmtu
Just keep coding, coding, coding_

Trying to fix my code

6.0001 LECTURE 2

ALGORITHMS

|(GUESS-and-CHECK |

BISECTION SEARCH
APPROXIMATION

GUESS-AND-CHECK

= Process called exhaustive enumeration

= Applies to a problem where ...
> You are able to guess a value for solution

> You are able to check if the solution is correct
> You can keep guessing until

> Find solution or

> Have guessed all values

September 9, 2019 6.0001 LECTURE 2

GUESS-AND-CHECK
— square root

= Basic idea:

o Given an int, call it x, want to see if there is another int
which is its square root

o Start with a guess and check if it is the right answer
> To be systematic, start with guess =0, then 1, then 2, etc

" If x is a perfect square, we will eventually find its root
and can stop

But what if x is not a perfect square?
> Need to know when to stop

o Use algebra — if guess squared is bigger than x, then can
stop

9/9/2019 6.0001 LECTURE 2

GUESS-AND-CHECK
— square root

guess = 0
X = 1nt (input ("Enter an integer: "))
eQ
while guess**2 < x: &ﬂwwé$
?:I;\\,\ ¥ 7
guess = guess + 1 @ﬁé
1f guess**2 == x:

print ("Square root of", x, "i1s", guess)
else:

print (x, "i1s not a perfect square")

9/9/2019 6.0001 LECTURE 2

GUESS-AND-CHECK
— square root

= Does this work for any integer value of x?

= What if x is negative?
o while loop immediately terminates

= Could check for negative input, and handle differently

9/9/2019 6.0001 LECTURE 2

GUESS-AND-CHECK
— square root

guess = 0

neg flag = False

x = 1int (input ("Enter a positive integer: "))

if x < 03
X neg flag = True
while guess**2 < x:

guess = guess + 1
1f guess**2 == x:
print ("Square root of", x, "is", guess)
else:
print (x, "is not a perfect square")
1f neg flag:
[print ("Just checking... did you mean", -x, "?"J

9/9/2019 6.0001 LECTURE 2

while LOOP OR :

~or LOOP?

= Already saw that code looks cleaner when iterating

over sequence of values
o Don’t set up the iterant yourself
o Less likely to introduce errors

as with a while loop

= Consider an example that usesa for loop and an

explicit range of values

9/9/2019 6.0001 LECTURE 2

GUESS-AND-CHECK
— cube root

cube = int (input ("Enter an integer: ")) <O
X
«e%e
e
for guess in range (): eV J0°
ﬁ“quﬁc
if guess**3 == cube: QQ»

print ("Cube root of", cube, "1s", guess)

September 9, 2019 6.0001 LECTURE 2

GUESS-AND-CHECK
— cube root

cube = int (input ("Enter an integer: "))
\e>
~ \\’5(\6 XN
for guess 1in range(%bs(cube)+l): @ﬁﬂ&géﬁ
< e O o)
if guess**3 == Fbs(cube): {Wﬁq(o&ﬁ
) \)2
if cube < 0: A oy @gs
: .\(\xe
guess = -guess

print ("Cube root of "+str (cube)+" 1s "+str (guess))

September 9, 2019

6.0001 LECTURE 2

GUESS-AND-CHECK
— cube root

cube = int (input ("Enter an integer: ")) dNﬁ
for guess in range (abs (cube)+1): ‘Qéﬁiegﬁﬁ
-\(\’6 o)
if guess**3 >= abs (cube) : <t ©° we'
wﬁﬁy\ea
break Qdﬁm
1f guess**3 != abs (cube):

print (cube, "i1s not a perfect cube")

else:
1f cube < 0:
guess = —guess

print ("Cube root of "+str(cube)+" 1s "+str (guess))

September 9, 2019

6.0001 LECTURE 2

40

ANOTHER EXAMPLE

= Remember those word problems from your
childhood?

= For example:
> Alyssa, Ben, and Cindy are selling tickets to a fundraiser
o Ben sells 20 fewer than Alyssa
> Cindy sells twice as many as Alyssa
> 1000 total tickets were sold by the three people
> How many did Alyssa sell?

= Could solve this algebraically, but we can also use
guess-and-check

9/9/2019 6.0001 LECTURE 2

GUESS-AND-CHECK WORD
PROBLEM

for alyssa in range (1001) :

ben = max(alyssa - 20, 0)
cindy = alyssa * 2
1f ben + cindy + alyssa == 1000:

print ("Alyssa sold " + str(alyssa) + " tickets")

print ("Ben sold " + str(ben) + " tickets")

print ("Cindy sold " + str(cindy) + " tickets™")

SUMMARY

= Strings provide a new data type
o Strings can be indexed and sliced

o Strings are immutable

= Looping mechanisms
cwhile and for loops
> Can loop over ranges of numbers
o Can loop over elements of a string

= Exhaustive search (aka guess-and-check) provides a
simple algorithm for solving problems where the set of
potential solutions is enumerable

9/9/2019 6.0001 LECTURE 2

	STRINGS, BRANCHING, ITERATION�(download slides and .py files to follow along!)
	LAST TIME
	TODAY
	Assigned Reading
	TYPES OF OBJECTS (RECAP)
	VARIABLES (RECAP)
	STRINGS (RECAP)
	OPERATOR OVERLOAD
	STRING OPERATIONS
	STRINGS
	STRINGS
	SLICING STRINGS EXAMPLE
	STRINGS
	BOOLS (RECAP)
	Slide Number 15
	BRANCHING
	INDENTATION
	Slide Number 18
	Slide Number 19
	CONTROL FLOW: �while LOOPS
	while LOOP EXAMPLE
	CONTROL FLOW: �while and for LOOPS
	CONTROL FLOW: for LOOPS
	range(start,stop,step)
	break STATEMENT
	break STATEMENT
	for 		VS 	while LOOPS
	STRINGS AND LOOPS
	CODE EXAMPLE:�ROBOT CHEERLEADERS
	Five Minute Break
	Slide Number 31
	GUESS-AND-CHECK
	GUESS-AND-CHECK �– square root
	GUESS-AND-CHECK �– square root
	GUESS-AND-CHECK �– square root
	GUESS-AND-CHECK �– square root
	while LOOP OR for LOOP?
	GUESS-AND-CHECK �– cube root
	GUESS-AND-CHECK �– cube root
	GUESS-AND-CHECK �– cube root
	ANOTHER EXAMPLE
	GUESS-AND-CHECK WORD PROBLEM
	SUMMARY

