Introduction,
Optimization Problems,
and a little more Python

(download slides and .py files from Stellar to follow along)

John Guttag

MIT Department of Electrical Engineering and
Computer Science

6.0002 Prerequisites

sExperience writing object-oriented programs in Python 3
=Familiarity with concepts of computational complexity
=Familiarity with some simple algorithms

=6.0001 sufficient, but not necessary

Question
| took 6.0001 this term
| took 6.0001 a previous term
| took 6.0001 ASE
None of the above

6.0002 LECTURE 1 2

Some Administrative Stuff

= Stellar course site
o https://sicp-s1.mit.edu/fall19

= Post privately on Piazza rather than emailing staff

= Course uses Python 3
° 3.6 or 3.7 fine

6.0002 LECTURE 1 3

https://sicp-s1.mit.edu/fall19

Course Policies

= Collaboration

o Okay: Helping others debug, discussing general attack on
problem

> NOT okay:
> Looking at code (from others in class or previous years)
o Allowing others to see your code
o Side-by-side coding

o Provide names of all “collaborators”

o We run code similarity program on all psets

=Extensions on problem sets
> Will consider requests that come with support from S”3
o Late days, 3 to use at your discretion

6.0002 LECTURE 1 i

Grading: Problem Sets and Finger Exercises

= Problem sets
> 35% of final grade

o Notice that due dates are not on consistent days of week

"Finger exercises on MITx
> Mandatory exercises 10% of final grade
> One per week
> No extensions on due dates

6.0002 LECTURE 1 5

Quizzes and Exams

= Microquizzes during scheduled lecture hours
> At end of some lectures (see calendar)
> Must have computer with wireless connection
> 3 thirty minute quizzes (worth 30%, best 2 out of 3)
o 1 forty-five minute quiz (worth 25%)
> No makeups except under extraordinary circumstance

"Quizzes will cover material from lectures, problems
sets, and assigned readings

6.0002 LECTURE 1 6

Relevant Reading

=Section 12.1

sSection 5.4 (lambda functions) = =
¢ Introduction to

7
Ccyputation
and Programming
“Using Python

With Application to Understanding Data

/ X :/ : &

.y

second edition
John \7téag

6.0002 LECTURE 1 7

How Does 6.0002 Compare to 6.00017

" Programming component of assignments a bit
easier

> Focus more on the problem to be solved than on
programming

= Lecture content is more abstract

° Includes things not needed for problem sets, but
relevant for quizzes

= Lectures will be faster paced
= Less about learning to program

= More about dipping your toe into
computational modeling

6.0002 LECTURE 1 8

Honing Your Programming Skills

=Quite a few additional bits of Python
sSoftware engineering
=Using packages

"How do you get to Carnegie Hall?

6.0002 LECTURE 1

Computational Models

=Using computation to help understand the world in
which we live

*Experimental devices that help us to understand
something that has happened or to predict the future

B

="Optimization models

=*Simulation models

=Statistical models

6.0002 LECTURE 1 10

What Is an Optimization Model?

= An objective function that 1s to be maximized or
minimized, e.g.,
o Minimize money spent traveling from Boston to NYC

' A - \\\\\W\\\\\\\ BE537\

P

" A set of constraints (possibly empty) that must be
honored, e.g.,
o Expected transit time < 5 hours

6.0002 LECTURE 1 11

Optimization Problems

="Anytime you are trying to maximize or minimize
something, you are solving an optimization problem

Rolling Efficient Frontiers (Relative Total Return vs DJIA)

FUEL RAIL
ALl

O-RING

FILTER

" __ELECTRICAL
CONNECTOR

ELECTRIC

INTAKE
MANIFOLD

PINTLE CAP

Copyright 200\Eordfuelinjection.com

Leading Upper Camber MMean Camber

L TLower Camber — Chord "C"

6.0002 LECTURE 1

Imagine that You Are a Burglar

=10,
Credi{Qne'

i

PLATINUM

PREFERRED CARD MEMBER VISA

6.0002 LECTURE 1

Knapsack Problems

=*You have limited strength, so there is a maximum
weight knapsack that you can carry

=*You would like to take more stuff than you can carry

"How do you choose which stuff to take and which to
leave behind?

=Two variants
o Continuous or fractional knapsack problem

> 0/1 knapsack problem

Versus

6.0002 LECTURE 1

A Fun 0/1 Knapsack Problem FOOTBALL

Patrick Mahomes @ JAX (9) $ 7200
Leonard Fournette vs KC (31) $6100
Dalvin Cook vs ATL (28) $ 6000
Curtis Samuel vs LAR (22) $ 4200

Tyler Lockett vs CIN (10) $ 6000
Marvin Jones @ ARI (13) $ 4800

Zach Ertz vs WAS (4) $6100
Kerryon Johnson @ ARI (27) $ 5800
Baltimore Ravens @ MIA (24) $ 3800

$50000

Ill

Objective function: Maximize total “score” for roster
Constraints:
Total cost < S50k

1 QB, 2 RB, 3 WR, 1TE, 1 Flex, 1 Team Defense

6.0002 LECTURE 1 15

A Not-So-Much-Fun Knapsack Problem

Calorie
Capacity

6.0002 LECTURE 1

0/1 Knapsack Problem, Formalized

"Each item is represented by a pair, <value, weight>

*"The knapsack can accommodate items with a total
weight of no more than w

"A vector, /, of length n, represents the set of
available items. Each element of the vector is an
item

=A vector, V, of length n, is used to indicate whether
or not items are taken. If V[i] =1, item [[i] is taken.
If V[i] =0, item [[i] is not taken

6.0002 LECTURE 1 17

0/1 Knapsack Problem, Formalized

Find a V that maximizes

n-1

E V0il* I[i] value

i=0

subject to the constraint that
n-1

N VIil* I[i] weight < w
=0

Going from an informal understanding of a problem to a
rigorous problem statement is an important skill to develop.

Vague PS-> Rigorous PS -> Algorithm -> Code

T T T

Real World 6.0002 PSet 6.0001 PSet

(6.0002 lectures)

6.0002 LECTURE 1 18

Many Closely Related Problems

= Multiple knapsack problem

* Integer knapsack problem Knapfadia

= Multiple constraint knapsack problem

= Bin-packing problem

Combinatorial Auctions
and Knapsack Problems

As Aaryun of Optmistion Mesods

VDM verag O WA

6.0002 LECTURE 1

Complementary Knapsack Problem

minimizes
Find a V that maxdmizes

nz VIil* Ili)l value

subject to the constraint that

n-1 2
N VIil* I[i] weight<w
=0

How Close Was a Presidential Election?

= 2016
o Popular vote &Y. s
Trump: 62984828 (L g e S @ 21

o Clinton: 66,853,514
> Electoral college ot

> Trump: 304 b N | s

° Clinton: 227 "

[Sanders

Could outcome have been changed if, prior to
election, some Clinton supporters had moved
to a different state?

6.0002 LECTURE 1 21

How Close Was a Presidential Election?

= 2008
o Popular vote
> Obama: 69,498,516
o McCain: 59,948,323
o Electoral college
> Obama: 365
c McCain: 173

Could outcome have been changed if, prior to
election, some McCain supporters had moved
to a different state?

6.0002 LECTURE 1 22

How Close Was the Election?

[Spctted Eagl
[Paul

[Kasich

[Sanders

Assume two candidates, and winner-take-all.
Assume that candidate Winner won the election.
What is the smallest number of voters for candidate

Loser that could have changed the outcome by moving
to a different state?

6.0002 LECTURE 1 23

Complementary Knapsack Problem

Objective function to minimize: Number of votes moved
from Winner to Loser

Constraint: Loser has at least the number of electoral
votes needed to win

6.0002 LECTURE 1 24

More Formally

minimizes
Find a V that maxdmizes
1 V[i] = 1 for states won by Winner
1k I0+ I[i].value is the total number of
2 V[l] I[l] value additional votes needed to flip
=0 state to Loser

subject to the constraint that

U= . . > I[i].weight is the number of
z VIi|* I[i]weight<w electoral college votes of
i=0 state /

w the number of additional
electoral college votes
needed to win

6.0002 LECTURE 1 25

Reduction to Knapsack Problem

=Solve 0/1 knapsack problem with
o Same set of items
o w = total # of electoral votes — # of votes needed to win

= The states not selected are the ones to which voters
should move

Transforming a new problem to a problem with a well-
known solution is an important problem-solving technique

https://stackoverflow.com/questions/7949705
/variation-on-knapsack-minimum-total-value-
exceeding-w/7950524#7950524

6.0002 LECTURE 1 26

Solving 0/1 Knapsack Problem: Brute Force

= 1. Enumerate all possible combinations of items. That
is to say, generate all subsets of the set of items. This is
called the power set (see 6.0001 lecture 10).

= 2. Remove all of the combinations whose total units
exceeds the allowed weight.

= 3. From the remaining combinations choose any one
whose value is the largest.

6.0002 LECTURE 1 vy

Why is the Powerset So Big?

="Recall

o A vector, V, of length n, is used to indicate whether or not
items are taken. If V[i] = 1, item I[i] is taken. If V[i] =0, item I[i]
is not taken

"How many possible different values can V have?

o As many different binary numbers as can be represented
in n bits

"For example, if there are 100 items to choose from, the
power set is of size 2190

> 1,267,650,600,228,229,401,496,703,205,376

6.0002 LECTURE 1 28

Are We Just Being Stupid?

= Alas, no
= 0/1 knapsack problem is inherently exponential

= But don’t despair

6.0002 LECTURE 1

Greedy Algorithm Often a Practical Alternative

*while knapsack not full
put “best” available item in knapsack

=*But what does best mean?
o Most valuable

o Least expensive
o Highest value/units

6.0002 LECTURE 1 30

An Example

= You are about to sit down to
a meal

= You know how much you G }v
value different foods, e.g., N P

you like donuts more than = wes m“;::::;, S e

| I e DRI :,.":;".‘..‘
app eS Whopper & cheese Double Pepperoni :T::::: Scampl &
. 721 calories (13 Inch) Popcorn chicken 950 calorl
. d Egg Chicken Royale m“"':"' — (kids portion) BBQ Chich
= But you have a calorie —_—t
’ 300 calories (';Wh‘;:)"m" 260 calories ;ﬂ":::i.l
budget, e.g., you don’t want ' e B ommirpecne swaen

i Margherita (9 inch) 258 calorles beans
s 1,128 calorles 380 calorl

to consume more than 750
calories

" Choosing what to eat is a
knapsack problem

6.0002 LECTURE 1 31

A Menu

m-mmmmmm

Value 89

calories 123 154 258 354 365 150 95 195

"l et’s look at a program that we can use to decide what
to order

6.0002 LECTURE 1 32

Class Food

class Food(object):
def __init__ (self, n, v, w):
self._name = n
self. _value = v
self._calories = w
def getValue(self):
return self._value
def getCost(self):
return self._calories
def density(self):
return self.getValue()/self.getCost()
def __str_ (self):
return self. name + ': <' + str(self._value)\
+ ', ' + str(self._calories) + '>'

6.0002 LECTURE 1 33

Build Menu of Foods

def buildMenu(names, values, calories):

"""names, values, calories lists of same length.
name a list of strings

values and calories lists of numbers

returns list of Foods"""
menu = []
for i in range(len(values)):
menu.append(Food(names[i], values[i],
calories[i]))

return menu

6.0002 LECTURE 1 34

Implementation of Flexible Greedy

v

def greedy(items, maxCost, keyFunction):
"""Assumes items a list, maxCost >= 0,
keyFunction maps elements of items to numbers"""
itemsCopy = sorted(items, key = keyFunction, *—
reverse = True)

result = []
totalValue, totalCost = 0, 0
for it in itemsCopy:
if (totalCost + it.getCost()) <= maxCost:

result.append(it)
totalCost += it.getCost()
totalValue += it.getValue()

return (result, totalValue)

Why use sorted rather than sort?
How does complexity grow relative to len(items)?

6.0002 LECTURE 1 35

Algorithmic Efficiency

O(n)
O(n log n)
O(n**2)

def greedy(items, maxCost, keyFunction):
""Y"Assumes items a list, maxCost >= 0,
keyFunction maps elements of items to numbers
— itemsCopy = sorted(items, key = keyFunction,
reverse = True)

result = []

totalvValue, totalCost = 0.0, 0.0

for i in range(len(itemsCopy)): <—

if (totalCost+itemsCopy[i].getCost()) <= maxCost:

result.append(itemsCopy[i])
totalCost += itemsCopy[i].getCost()
totalvValue += itemsCopy[i].getValue()

return (result, totalValue)

6.0002 LECTURE 1 36

Five Minute Break

\ » .1 .
RS

* Note: o.‘l ;;l;rfill brain.
Allow M?Sfor knowledge
| to Seak in before fopping up-

Using greedy

def testGreedy(items, constraint, metric):
metrics = {'value': Food.getValue, ‘density’':Food.density,
‘cost': lambda x: 1/Food.getCost(x)}
try:
taken, val = greedy(itemS3~gonstraint, metrics[metric])

except:
print('Unknown metric', metric) ?
return

print(‘'Total value of items taken ="', val)

for item in taken:
print(’ ', item)

6.0002 LECTURE 1

lambda

"lambda used to create anonymous functions
> Tambda <id,, id,, ... id >: <expression>
o Returns a function of n arguments

=Can be very handy, as here

"Possible to write amazing complicated lambda expressions

*Don’t—use def instead

6.0002 LECTURE 1 39

Using greedy

def testGreedy(items, constraint, metric):
metrics = {'value': Food.getValue, ‘density’':Food.density,
‘cost': lambda x: 1/Food.getCost(x)}

try:

taken, val = greedy(items, constraint, metrics[metric])
except:

print('Unknown metric', metric)

return

print(‘'Total value of items taken ="', val)
for item in taken:
, item)

print(’

6.0002 LECTURE 1 40

Testing Different Definitions of “Best”

def testGreedys(foods, maxUnits):
metric = input('Chose a metric (cost, value, or density): ')
print('Use greedy by', metric, 'to allocate', maxUnits,
'calories')
testGreedy(foods, maxUnits, metric)

names = ['wine', 'beer', 'pizza', 'burger', 'fries',
'cola', 'apple', 'donut', 'cake'l]

values = [89,90,95,100,90,79,50,10]

calories = [123,154,258,354,365,150,95,195]

foods = buildMenu(names, values, calories)

testGreedys(foods, 750)

6.0002 LECTURE 1 41

Running the Tests

names = ['wine', 'beer', 'pizza', 'burger’', 'fries’,
‘cola', 'apple', ‘'donut', 'cake']

values = [89,90,95,100,90,79,50,10]

calories = [123,154,258,354,365,150,95,195]

foods = buildMenu(names, values, calories)

testGreedys(foods, 750)

Run code

6.0002 LECTURE 1 42

Why Different Answers?

sSequence of locally “optimal” choices don’t always
yield a globally optimal solution

"|s greedy by density always a winner?
o Try testGreedys(foods, 1000)

6.0002 LECTURE 1 43

The Pros Greedy

=Easy to implement

="Computationally efficient

Circle all that apply

Main Street?
Wall Street?
Vassar Street?
The Art of the Deal?

6.0002 LECTURE 1 44

The Con of Greedy

=Does not always yield the best solution
> Don’t even know how good the approximation is

=sSuppose we want to find a truly optimal solution?

6.0002 LECTURE 1 45

Brute Force Algorithm

=]1. Enumerate all possible combinations of items.

=). Remove all of the combinations whose total units
exceeds the allowed weight.

=3. From the remaining combinations choose any one
whose value is the largest.

6.0002 LECTURE 2

Use a Search Tree to Do This

6.0002 LECTURE 2 4

Search Tree Implementation

*The tree is built top down starting with the root

=The first element is selected from the still to be
considered items
o If there is room for that item in the knapsack, a node is

constructed that reflects the consequence of choosing to

take that item. By convention, we draw that as the left
child

> We also explore the consequences of not taking that
item. This is the right child

*The process is then applied recursively to non-leaf
children

=*Once tree generated, chose a node with the highest
value that meets constraints

6.0002 LECTURE 2

lllustrative Example

=With calorie budget of 750 calories, chose an optimal
set of foods from the menu

m-mm

Value 90

calories 154 258 354

6.0002 LECTURE 2

A Search Tree Enumerates Possibilities

/ \ - ’ Left-first, depth-first
\ enumeration

l - —
i /\
(//// \ Take Don’tTake /
£ &

\

Val = 170 Val = 120 Val=140 Val=90 Val = 80 Val =30 Val = 50 Val = 0
e Sl Cal =508 Cal =145 Cal =612 Cal=258 Cal =354 Cal=0
50

def maxVal(toConsider, avail):
"""Assumes toConsider a list of items,
avail a weight
Returns a tuple of the total value of a solution
to the @/1 knapsack problem and the items of
that solution"""
if toConsider == [] or avail == 0:
result = (@0, ()) #0 value, nothing taken
elif toConsider[@].getCost() > avail: #cannot afford current item
#Explore right branch only
result = maxVal(toConsider[1:], avail)
else:

6.0002 LECTURE 1 51

def maxVal(toConsider, avail):
"""Assumes toConsider a list of items,
avail a weight
Returns a tuple of the total value of a solution
to the @/1 knapsack problem and the items of
that solution"""
if toConsider == [] or avail == 0:
result = (0, ()) #0 value, nothing taken
elif toConsider[@].getCost() > avail: #cannot afford current item
#Explore right branch only
result = maxVal(toConsider[1:], avail)
else:
nextItem = toConsider[0]
#Explore left branch
withVal, withToTake = maxVal(toConsider[1:],
avail - nextItem.getCost())
withVal += nextItem.getValue()
#Explore right branch
withoutVal, withoutToTake = maxVal(toConsider[1:], avail)

6.0002 LECTURE 1 52

def maxVal(toConsider, avail):
"""Assumes toConsider a list of items,
avail a weight
Returns a tuple of the total value of a solution
to the @/1 knapsack problem and the items of
that solution"""
if toConsider == [] or avail == 0:
result = (0, ()) #0 value, nothing taken
elif toConsider[@].getCost() > avail: #cannot afford current item
#Explore right branch only
result = maxVal(toConsider[1:], avail)
else:
nextItem = toConsider[0]
#Explore left branch
withVal, withToTake = maxVal(toConsider[1:],
avail - nextItem.getCost())
withVal += nextItem.getValue()
#Explore right branch
withoutVal, withoutToTake = maxVal(toConsider[1:], avail)
#Choose better branch
if withval > withoutVal:
result = (withvVal, withToTake + (nextItem,))
else:
result = (withoutVal, withoutToTake)
return result

6.0002 LECTURE 1 53

Computational Complexity

*Time based on number of nodes generated
=*Number of levels is number of items to choose from
sNumber of nodes at level j is 2

=So, if there are n items the number of nodes is
o Yizo 2!
o e, O(2™1)

" An obvious optimization: don’t explore parts of tree
that violate constraint (e.g., too many calories)

o Doesn’t change complexity

6.0002 LECTURE 2

Ramification of This

timePerNode = 10**-9 #1 nano second
for numNodes in range(9, 101, 10):
seconds = (2**(numNodes+1))*timePerNode
years = seconds/(60*60*24*365)
print('Time for', numNodes, 'nodes =',\
round(years, 4), 'years')

poes this mean e e
ion to re
solution

6.0002 LECTURE 2

We’ll Find Out on Wednesday

ED.#¥
TN .

6.0002 LECTURE 1

