
Introduction,
Optimization Problems,
and a little more Python

(download slides and .py files from Stellar to follow along)

John Guttag

MIT Department of Electr ical Engineering and
Computer Science

6.0002 LECTURE 1 1

§Experience writing object-oriented programs in Python 3

§Familiarity with concepts of computational complexity

§Familiarity with some simple algorithms

§6.0001 sufficient, but not necessary

6.0002 Prerequisites

6.0002 LECTURE 1 2

Question
I took 6.0001 this term
I took 6.0001 a previous term
I took 6.0001 ASE
None of the above

§ Stellar course site
◦ https://sicp-s1.mit.edu/fall19

§ Post privately on Piazza rather than emailing staff

§ Course uses Python 3
◦ 3.6 or 3.7 fine

Some Administrative Stuff

6.0002 LECTURE 1 3

https://sicp-s1.mit.edu/fall19

§ Collaboration
◦ Okay: Helping others debug, discussing general attack on

problem
◦ NOT okay:

◦ Looking at code (from others in class or previous years)
◦ Allowing others to see your code
◦ Side-by-side coding

◦ Provide names of all “collaborators”
◦ We run code similarity program on all psets

§Extensions on problem sets
◦ Will consider requests that come with support from S^3
◦ Late days, 3 to use at your discretion

Course Policies

6.0002 LECTURE 1 4

§ Problem sets
◦ 35% of final grade
◦ Notice that due dates are not on consistent days of week

§Finger exercises on MITx
◦ Mandatory exercises 10% of final grade

◦ One per week
◦ No extensions on due dates

Grading: Problem Sets and Finger Exercises

6.0002 LECTURE 1 5

§ Microquizzes during scheduled lecture hours
◦ At end of some lectures (see calendar)
◦ Must have computer with wireless connection
◦ 3 thirty minute quizzes (worth 30%, best 2 out of 3)
◦ 1 forty-five minute quiz (worth 25%)
◦ No makeups except under extraordinary circumstance

§Quizzes will cover material from lectures, problems
sets, and assigned readings

Quizzes and Exams

6.0002 LECTURE 1 6

§Section 12.1

§Section 5.4 (lambda functions)

Relevant Reading

6.0002 LECTURE 1 7

§ Programming component of assignments a bit
easier
◦ Focus more on the problem to be solved than on

programming

§ Lecture content is more abstract
◦ Includes things not needed for problem sets, but

relevant for quizzes

§ Lectures will be faster paced

§ Less about learning to program

§ More about dipping your toe into
computational modeling

How Does 6.0002 Compare to 6.0001?

6.0002 LECTURE 1 8

§Quite a few additional bits of Python

§Software engineering

§Using packages

§How do you get to Carnegie Hall?

Honing Your Programming Skills

6.0002 LECTURE 1 9

§Using computation to help understand the world in
which we live

§Experimental devices that help us to understand
something that has happened or to predict the future

§Optimization models

§Simulation models

§Statistical models

Computational Models

6.0002 LECTURE 1 10

What Is an Optimization Model?

§ An objective function that is to be maximized or
minimized, e.g.,
◦ Minimize money spent traveling from Boston to NYC

§A set of constraints (possibly empty) that must be
honored, e.g.,
◦ Expected transit time < 5 hours

6.0002 LECTURE 1 11

§Anytime you are trying to maximize or minimize
something, you are solving an optimization problem

Optimization Problems

6.0002 LECTURE 1 12

Imagine that You Are a Burglar

6.0002 LECTURE 1 13

Knapsack Problems

6.0002 LECTURE 1 14

§You have limited strength, so there is a maximum
weight knapsack that you can carry

§You would like to take more stuff than you can carry

§How do you choose which stuff to take and which to
leave behind?

§Two variants
◦ Continuous or fractional knapsack problem
◦ 0/1 knapsack problem

versus

A Fun 0/1 Knapsack Problem

6.0002 LECTURE 1 15

Objective function: Maximize total “score” for roster
Constraints:

Total cost ≤ $50k
1 QB, 2 RB, 3 WR, 1 TE, 1 Flex, 1 Team Defense

A Not-So-Much-Fun Knapsack Problem

6.0002 LECTURE 1 16

1500
Calorie

Capacity

§Each item is represented by a pair, <value, weight>
§The knapsack can accommodate items with a total
weight of no more than w

§A vector, I, of length n, represents the set of
available items. Each element of the vector is an
item
§A vector, V, of length n, is used to indicate whether
or not items are taken. If V[i] = 1, item I[i] is taken.
If V[i] = 0, item I[i] is not taken

0/1 Knapsack Problem, Formalized

6.0002 LECTURE 1 17

0/1 Knapsack Problem, Formalized

6.0002 LECTURE 1 18

Going from an informal understanding of a problem to a
rigorous problem statement is an important skill to develop.

Vague PS-> Rigorous PS -> Algorithm -> Code

6.0001 PSet6.0002 PSetReal World
(6.0002 lectures)

§ Multiple knapsack problem

§ Integer knapsack problem

§ Multiple constraint knapsack problem

§ Bin-packing problem

§…

Many Closely Related Problems

6.0002 LECTURE 1 19

Complementary Knapsack Problem

6.0002 LECTURE 1 20

minimizes

≥

Why might this be interesting?

§ 2016
◦ Popular vote

◦ Trump: 62,984,828
◦ Clinton: 66,853,514

◦ Electoral college
◦ Trump: 304
◦ Clinton: 227

How Close Was a Presidential Election?

6.0002 LECTURE 1 21

Could outcome have been changed if, prior to
election, some Clinton supporters had moved
to a different state?

§ 2008
◦ Popular vote

◦ Obama: 69,498,516
◦ McCain: 59,948,323

◦ Electoral college
◦ Obama: 365
◦ McCain: 173

How Close Was a Presidential Election?

6.0002 LECTURE 1 22

Could outcome have been changed if, prior to
election, some McCain supporters had moved
to a different state?

How Close Was the Election?

6.0002 LECTURE 1 23

2008 2016

Assume two candidates, and winner-take-all.
Assume that candidate Winner won the election.
What is the smallest number of voters for candidate
Loser that could have changed the outcome by moving
to a different state?

Complementary Knapsack Problem

6.0002 LECTURE 1 24

Objective function to minimize: Number of votes moved
from Winner to Loser

Constraint: Loser has at least the number of electoral
votes needed to win

minimizes

≥

More Formally

6.0002 LECTURE 1 25

V[i] = 1 for states won by Winner
I[i].value is the total number of
additional votes needed to flip
state to Loser

I[i].weight is the number of
electoral college votes of
state i
w the number of additional
electoral college votes
needed to win

§Solve 0/1 knapsack problem with
◦ Same set of items
◦ w = total # of electoral votes – # of votes needed to win

§ The states not selected are the ones to which voters
should move

Reduction to Knapsack Problem

6.0002 LECTURE 1 26

Transforming a new problem to a problem with a well-
known solution is an important problem-solving technique

https://stackoverflow.com/questions/7949705
/variation-on-knapsack-minimum-total-value-
exceeding-w/7950524#7950524

§ 1. Enumerate all possible combinations of items. That
is to say, generate all subsets of the set of items. This is
called the power set (see 6.0001 lecture 10).

§ 2. Remove all of the combinations whose total units
exceeds the allowed weight.

§ 3. From the remaining combinations choose any one
whose value is the largest.

Solving 0/1 Knapsack Problem: Brute Force

6.0002 LECTURE 1 27

§Recall
◦ A vector, V, of length n, is used to indicate whether or not

items are taken. If V[i] = 1, item I[i] is taken. If V[i] = 0, item I[i]
is not taken

§How many possible different values can V have?
◦ As many different binary numbers as can be represented

in n bits

§For example, if there are 100 items to choose from, the
power set is of size 2100

◦ 1,267,650,600,228,229,401,496,703,205,376

Why is the Powerset So Big?

6.0002 LECTURE 1 28

§ Alas, no

§ 0/1 knapsack problem is inherently exponential

§ But don’t despair

Are We Just Being Stupid?

6.0002 LECTURE 1 29

§while knapsack not full
put “best” available item in knapsack

§But what does best mean?
◦ Most valuable
◦ Least expensive
◦ Highest value/units

Greedy Algorithm Often a Practical Alternative

6.0002 LECTURE 1 30

§ You are about to sit down to
a meal

§ You know how much you
value different foods, e.g.,
you like donuts more than
apples

§ But you have a calorie
budget, e.g., you don’t want
to consume more than 750
calories

§ Choosing what to eat is a
knapsack problem

An Example

6.0002 LECTURE 1 31

§Let’s look at a program that we can use to decide what
to order

A Menu

6.0002 LECTURE 1 32

Food wine beer pizza burger fries coke apple donut

Value 89 90 30 50 90 79 90 10

calories 123 154 258 354 365 150 95 195

Class Food

6.0002 LECTURE 1 33

Build Menu of Foods

6.0002 LECTURE 1 34

Implementation of Flexible Greedy

6.0002 LECTURE 1 35

Why use sorted rather than sort?
How does complexity grow relative to len(items)?

Algorithmic Efficiency

6.0002 LECTURE 1 36

O(n)
O(n log n)
O(n**2)

Five Minute Break

6.0002 LECTURE 1 37

5 minutes

Using greedy

6.0002 LECTURE 1 38

§lambda used to create anonymous functions
◦ lambda <id1, id2, … idn>: <expression>
◦ Returns a function of n arguments

§Can be very handy, as here

§Possible to write amazing complicated lambda expressions

§Don’t—use def instead

lambda

6.0002 LECTURE 1 39

Using greedy

6.0002 LECTURE 1 40

Testing Different Definitions of “Best”

6.0002 LECTURE 1 41

Running the Tests

6.0002 LECTURE 1 42

Run code

§Sequence of locally “optimal” choices don’t always
yield a globally optimal solution

§Is greedy by density always a winner?
◦ Try testGreedys(foods, 1000)

Why Different Answers?

6.0002 LECTURE 1 43

§Easy to implement

§Computationally efficient

The Pros Greedy

6.0002 LECTURE 1 44

Circle all that apply
Main Street?
Wall Street?

Vassar Street?
The Art of the Deal?

§Does not always yield the best solution
◦ Don’t even know how good the approximation is

§Suppose we want to find a truly optimal solution?

The Con of Greedy

6.0002 LECTURE 1 45

§1. Enumerate all possible combinations of items.

§2. Remove all of the combinations whose total units
exceeds the allowed weight.

§3. From the remaining combinations choose any one
whose value is the largest.

Brute Force Algorithm

6.0002 LECTURE 2 46

Use a Search Tree to Do This

6.0002 LECTURE 2 47

§The tree is built top down starting with the root
§The first element is selected from the still to be
considered items
◦ If there is room for that item in the knapsack, a node is

constructed that reflects the consequence of choosing to
take that item. By convention, we draw that as the left
child

◦ We also explore the consequences of not taking that
item. This is the right child

§The process is then applied recursively to non-leaf
children
§Once tree generated, chose a node with the highest
value that meets constraints

Search Tree Implementation

6.0002 LECTURE 2 48

§With calorie budget of 750 calories, chose an optimal
set of foods from the menu

Illustrative Example

6.0002 LECTURE 2 49

Food beer pizza burger

Value 90 30 50

calories 154 258 354

A Search Tree Enumerates Possibilities

6.0002 LECTURE 2

50

Take Don’tTake

Left-first, depth-first
enumeration

Val = 170
Cal = 766

Val = 120
Cal = 766

Val = 140
Cal = 508

Val = 90
Cal = 145

Val = 80
Cal = 612

Val = 30
Cal = 258

Val = 50
Cal = 354

Val = 0
Cal = 0

Implementation

6.0002 LECTURE 1 51

Implementation

6.0002 LECTURE 1 52

Implementation

6.0002 LECTURE 1 53

§Time based on number of nodes generated

§Number of levels is number of items to choose from

§Number of nodes at level i is 2i

§So, if there are n items the number of nodes is
◦ ∑$%&$%' 2$

◦ I.e., O(2')*)

§An obvious optimization: don’t explore parts of tree
that violate constraint (e.g., too many calories)
◦ Doesn’t change complexity

Computational Complexity

6.0002 LECTURE 2 54

Ramification of This

6.0002 LECTURE 2 55

Does this mean that we can’t find an optimal

solution to real problems?

We’ll Find Out on Wednesday

6.0002 LECTURE 1 56

