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Assigned Reading

=Today:
> Chapters 18, 22

=Next lecture:
o Chapter 23

o Sections 24.1-24.3

&

Introduction to

" Computation

A Sinq Python

/% d Programming

"/ With'Application to Understanding Data
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Happy

Thanksgiving!
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115186 / 11,5952
Hack the City:

Data Science for Public Good

Are we living under  How do trees reflect What are crime Where are Airbnb
the risk of flooding?  local quality-of-life patterns in your around us?
and social injustice? neighborhood? Do they increase
local rent?

This workshop teaches how to apply data science
for public good in Cambridge. Through hands-on
exercises and tutorials, you will build mini projects
with fun real-world data, create playful visualization,
and formulate data science questions to discover
and support local community.

Class Meetings: Jan 22-31, 2-4 pm

Credits: 3 credits

Room: 9-450

Prerequisites: 6.00 or permission of instructor = (S:
. 1 | i COURSE

Instructors: Yuan Lai (DUSP) Nina Lutz (Media Lab) ELEVEN+SIX
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Two Topics Today

"Finish up curve fitting
o curveFitting.py

sStart machine learning
o Lect10.py
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28x28x20

14x14x20

10x10x20

Mystery Data

350 T T
® Data
300 = Fit of degree 2, R2 = 0.83748 .
== Fit of degree 4, R2 = 0.84895
250 = Fit of degree 8, R2 = 0.86556
== Fit of degree 16, R2 = 0.96553
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Feature Learning

Input layer C1-layer P1-1 C2-layer MP2-1 C3-layer Fully-
1 Map 20 Maps Kzrnlel'd;ilz 20 Maps Kernel'azt;[z 20 Maps  connected
Neurons: 1024 Kernel: 5x5 ’ Kernel: 5x5 ’ Kernel: 3x3 layer
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Classification

Output layer
Fully-
connected




Why Fit Curves?

=We have a set of numerical data, relating
observed values with different inputs (e.g.,
spring displacement versus expansion force)

*When we fit a curve to the data, we are finding
a relationship between an independent
variable (mass or force) and an estimated value
of a dependent variable (distance or
displacement)

=To decide how well a curve fits, we need a way
to measure the goodness of fit —called the
objective function (e.g., least squares)

=Given the objective function, we also need an
algorithm to find the curve that minimizes it
(we used linear regression to find best
polynomial of a given order)

=Result in our example is a curve that predicts
displacement as function of force

=R? (coefficient of determination) measures
quality of fit
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Measured Displacement of Spring

Il 1 1 |
2 4 6 8
|Force| (Newtons)

Measured Displacement of Spring

10

® Measured points
= Linear fit, k = 21.53686

|Force| (Newtons)
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Four Curves Fit to the Same Data

Mystery Data

® Data
Fit of degree 2, R2 = 0.83748
Fit of degree 4, R2 = 0.84895

350

]

300

250 Fit of degree 8, R2 = 0.8¢
Fit of degree 16, R2 £ 0.96553 |)
150} i
100} _
50 |- Does this mean
ol thata 16 order
polynomial isthe
—0r ° best fit for the
— | | | ?
10975 _5 0 s data:
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Does Tightest = Best?

=L ooks like an order 16 fit is really good — so should we
just use this as our model?

> To answer, need to ask —why build models in first place?

1) Help us understand process that generated the data
o E.g., the properties of a particular linear spring

2) Help us make predictions about out-of-sample data

o E.g., predict the displacement of a spring when a force is
appliedto it

o E.g., predict the effect of treatmenton a new patient

=" A good model helps us do both of these things
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The Key Question

" If a model helps us to understand underlying process
and to predict responsesto new inputs, then need to
ask: to what extent is the model actually shaped by the
underlying process we are trying to understand?

= When the model is compley, it runs the risk of fitting
the noise, notJust the data

3 bt : ' .:- "Vl Y .‘.f Ll
JMY 1 x ’ﬁ"“" il
u}h : n\%&w‘d‘ Ji&k i‘“*%
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Training versus Testing

"One way to separate out impact of noise on our model
is to take advantage of fact that each time we sample a
system:

° Signal will be roughly the same
> Noise will typically be different (if it is random)

=So if we can make multiple trials, we might be able to
separate effect of noise from underlying signal

=Use one set of data as a “training” set to fit a model

=Use a second set of data as a “test” set, and see how
well the model from the training set accounts for the
test set
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Generate 2 Data Sets from Same Distribution

xVals = range(-10, 11, 1)

a, b, c =3, 0, 0

genNoisyParabolicData(a, b, c, xVals, 'parabolal.txt')
genNoisyParabolicData(a, b, c, xVals, 'parabola2.txt")

Create two different data sets of same system

degrees = (1, 2, 16)
xValsl, yValsl = getData( 'parabolal.txt")
modelsl = genFits(xValsl, yValsl, degrees)
testFits(modelsl, degrees, xValsl, yValsl, 'Parabola 1)

Fit models to first data set

pylab.figure()
xVals2, yVals2 = getData( 'parabola2.txt")
models2 = genFits(xVals2, yVals2, degrees)
testFits(models2, degrees, xVals2, yVals2, 'Parabola 2'")

Fit models to second data set
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Look at Fits to Training Data

350 | Parapola 1

® ® Data
300 === Fit of degree 1, R2 = 2e-05
=== Fit of degree 2, R2 = 0.86088

250 1 === Fit of degree 16, R2 =( 0.99619

200

150+

400

100

50

=50

300

200

-10

100

—100
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Parabola 2

|
® @ Data

=== Fit of degree 1, R2 = 0.00109
=== Fit of degree 2, R2 = 0.88736
=== Fit of degree 16, R2 € 0.9798)

12

10



Training and Testing Errors

testFits(model@ degrees, xVals@) yVal@ '‘Parabola 1')

testFits(model@ degrees, xVals@ yVal@
"Apply Parabola 1 Model to Parabola 2')

350 , Parablola 1 [ 400 Apply Parabola 1 Model to Parabola 2
® @ Data ° '. Data ' :
300 = Fitof degree 1, Rz" 2805 3 d — Fit of degree 1, R2 = -0.00518
: = Fit of degree 2
250 === Fit of degree 16,_R 300 . 9
200
200
150
100 100
50
0
0
_50 | | | —_ | | |
—-10 -5 0 5 10 10910 -5 0 5 10

Fit models from first data set to training data | Fit models from first data set to test data
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The Moral of the Story

=16-degree polynomial is an
example of overfitting to the
data

=|f we only look at how well
model fits training data, we
may not detect that model is
too complex

*Need to validate: Train on one
data set, then test on a hold
out set
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Usually, We Can’t Simply Generate Data

def splitData(xVals, yVals, fracTraining):
trainingSize = int(len(xVals)xfracTraining
trainingI =|random.sample(range(len(xVals)), trainingSize)
trainingl.sor
trainingX, trainingY, testX, testY = [1, [1, [1, [I
for i in range(len(xVals)):
if 1 in trainingl:
trainingX.append(xVals[i])
trainingY.append(yVals[i])
else:
testX.append(xVals[i])
testY.append(yVals[i])
return (trainingX, trainingY), (testX, testY)

Split the data into two sets:
one for training,
one for testing
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Validating a Model

def fitAndValidate(xVals, yVals, degrees):
training, test =|splitData(xVals, yVals, .5

models =
for d in cEc]egrees: Build models based on training data

models.append(np.polyfit(training[@], training[1], d))
for m in models:
print([round(c, 2) for ¢ in m])
testFits(models, degrees, training[@], training[1],
'Fit to Training Data')
plt.figure()
testFits(models, degrees, test[0], test[1],
'Applied to Test Data')

Test against training data

Test against test data
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Validating a Model

Fit to Training Data

1250~ i l?i:toaf degree 2, R2 =.0.99658
1000 - === Fitof degree 16, RZ degree 2 model (rounded)
250 y = 3.08x*>—0.02x + 0.46
500 -
250 -
0_
20  -10 0 10 20 Applied to Test Data
2000
1000
degree 16 model (rounded) ,
y =-0.01x° -0.04x> +0.44x* +
—1000 -
0.52x3—2.24x%*+ 1.51x + 16.94
—20004 ¢ pata
wes Fit of degree 2, R2 =.0.98683
—3000 - === Fit of degree 16, R2 @ |

| I I

I
-10 0 10 20
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The Take Home Message

="Choosing an overly-complex model leads to overflttlng |
to the training data

"|ncreases the risk of a model that works poorly on data
not included in the training set

*0On the other hand choosing an insufficiently complex
model has other problems

o As we saw when wefit a Ime to data that was basically

parabolic
- EVERYTHING SHOULD BE MADE
L AS SIMPLE RS POSSIBLE

BUT NOT

4 "’* SIMPLER
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One Last Thought

"Combining modelinformation with goodness of fit can
provide additional insight

"Considerthe order 1 fit to the original spring data

0.6 Measured Displacement of Spring

@® Measured points
= | inear fit, k = 21.53686

o
8]

Distance (meters)
(@]
w

o
=
I

00 | | | |

|Force| (Newtons)

= R2vyalue is .8815 — which is decent
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One Last Thought

=Visual inspection suggests
that perhaps some different
process comesinto play for 0.6 —Measured Displacement of Spring

@® Measured points

large forces? — Linear fit, k = 2153686

0.5+

"*Remember model said

Hooke’s law applied up to
some maximum force

Distance (meters)
o
w

"Could search for point at
which to break dataintotwo o1 ¢e*° :
sets, and fit models to both - l 1 ] J

0 2 4 6 8 10

sets of data separately |Force| (Newtons)

o Look for break that minimizes
sum of residual error in both
parts?
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Seems Better?

@® Measured points Y ..‘_".‘ a\ a
og\C
cound 108\~ « akes

wn @ Measured points

e 0.4 - === Linear fit, k = 15.87119
about why!

mmm | inear fit

|Force| (Newtons)

"R? value for first part now .9581; for second part .6784;
without break, have R2 of .8815

*And we probably have a better estimate of k (old est.
21.53)

21
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Wrapping Up Curve Fitting

*\We can use linear regression to fit a curve to data
> Mapping from independentvalues to dependentvalues

*That curve is a model of the data that can be used to
predict the value associated with independentvalues
we haven’t seen (out-of-sample data)

=R-squared used to evaluate model
o Higher not always “better” because of risk of over fitting

"Choose complexity of model based on
> Theory about structure of data
° Validation
o Simplicity
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Occam’s Razor

" “Frustra fit per plura quod potest fieri per pauciora”
o “Itis futile to do with more things that which can be done

with fewer”

"Among competing hypotheses, the one with the
fewest assumptions should be selected

William of Occam
1287-1347

A Parsimonious
Shave Every
Time!
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Switching gears

= (57 sl T
( »= - ¢
3 /f‘ - e
v @
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On to Machine Learning
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Machine Learning Is Everywhere

THE ULTIMATE GO CHALLENGE
GAME 3 OF 5

12 MARCH 2016

JON~) NETELIX

Won 3 of 5 Won 0 of 5

RESULT NUMBER TIME TIME
OF MOVES WHITE BLACK

DO -

Recommendation systems

Figure 1: Al/Machine Learning Hedge Fund Index vs. quants and traditional hedge funds

Too close Dangerous

- Face detection/recognition |

Cancer diagnosis

Assisted driving



Success stories: Speech & Language

= Many applications already available
© Apple Siri (3 Trouvéuncafé proche

de moi 9
> Amazon Echo

¢¢ Je cherche le meilleur
restaurant italien du coin 99

¢¢ Ou se trouve I’Apple
Store le plus proche ? 99

° Baidu Deep Voice
° Google Translate

Translating from English to Russian back to English resulted in:
“The vodka is great but the meat is rotten”
What was the original English sentence?

DETECT LANGUAGE ENGLISH SPANISH FRENCH v « ENGLISH FRENCH YIDDISH v

her towel is pink and his towel is blue X sa serviette est rose et sa serviette est bleue
DETECT LANGUAGE ENGLISH SPANISH FRENCH v Plans ENGLISH FRENCH YIDDISH v

sa serviette est rose et sa serviette est bleue X his towel is pink and his towel is blue
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Success stories: Vision

= Face recognition

ulllllulllll'

= Postal service uses handwriting
recognition
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Success stories: Finance

Robot Investors
Al hedge fund managers are beating human peers, but not stock benchmarks

/7 Eurekahedge Al Index  S&P 500 / Hedge Fund index*

$180
160
140

120

100

| I 1 I 80

Mar 2016 2018 2019
2014

Source: Eurekahedge, Hedge Fund Research, Inc., Bloomberg
2019 gains through March for every $100 invested in 2014; S&P 500 returns are with dividends
reinvested; *HFRI Fund Weighted Composite Index
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Success stories: Game players

i “‘® © THE ULTIMATE GO CHALLENGE
:‘ ‘ J J\/'§'. ; GAMESOFS
—
i‘i J.J 59 15 MARCH 2016
Ju. \/ 2® ©
3 ) JJ o 09 _
.‘ @ 0® ®

*()-@

vy Y9 WA

.
3:“‘6““%“”‘ ié‘i YAlphaGo  Lee Sedol

.JJ Won4 of 5 Won 1 of 5
-
JJJJ
NUMBER TIME TIME

?JSJJ J g“ :J ~/ RESULT  JF MOVES WHITE BLACK
| JJ C:

° ‘ 2h+
o g S .""1‘:‘“ = AlphaGo

Early 2016

Image: Google

AlphaGo learned to play Go by learning a model from training data selected by
people (the training sets were the “programming”)

AlphaGo Zero learned to play Go with no human input, just by playing against
itself, based on an objective function and a set of rules
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The plan ahead

"Machine learningis a huge topic

o Courses covering machine learning include 6.008, 6.036, 6.860,
6.862, 6.867,9.520, 9.54, 9.66

o Topic is large component of other courses, e.g., in natural
language processing, computational biology, computer vision,
robotics, other areas

=|n 6.0002, we will
o Provide an introduction to the basic ideas:

o Given a set of examples of inputs and (possibly) outcomes, want to
learn model that describes the underlying process

° How to measure similarity (distance) between examples?
°c How to group examples based on distance to create models?

° Introduce classification methods (learning with outcomes),
such as “k nearest neighbor” methods

° Introduce clustering methods (learning without outcomes),
such as “k-means”
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How Are Things Learned?

=Memorization
o Accumulation of individual facts
o Limited by
> Time to observe facts

o Memory to store facts
o Can’t deduce new information

=Generalization
o Deduce new facts from old facts

o Limited by accuracy of deduction process
o Essentially a predictive activity
o Assumes that the past predicts the future

M NOT GENCRALIZING! %5
WHY DO PEOPLE LIKE YOU
ALWAYS SAY THAT ?

*Interested in extending deduction to %
programs that can infer useful information ps /=<
from implicit patterns in data =
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What Is Machine Learning?

= All useful programs “learn” something

" |In the first lecture of 6.0001 we looked at an algorithm
for finding (learning?) square roots

= We recently looked at using linear regression to find
(learn) a model of a collection of points associating
system responses to input values

= We could argue that root finding and curve fitting
algorithms “learn” models to fit to data sets

" But each algorithm is designed to meet a specific goal,
and somehow machine learning should be broader
than that
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What Is Machine Learning?

: EarIy definition of machine learning:

“Field of study that gives computers the ab/l/ty to
learn without being explicitly programmed.” Arthur
Samuel (1959)

o Computer pioneer who wrote first self-learning
program, which played checkers—learned from
“experience”

° Invented alpha-beta pruning — widely used in
decision tree searching

= "A computer program is said to learn from experience

E with respect to some class of tasks T and performance

measure P if its performance at tasks in T, as measured

foy P, i;nproves with experience E.” Tom Mitchell - CMU
1997
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I
CLICK HERE TOBUYA |:| I THINK WE
TICKET TO BASE JUMP || THE INTER—  ca(L IT
| FROM THE INTERNA— [:| 'NET IS  “WACHINE
TIONAL SPACE STATION. |i| TRYING TO | gARNING~
£ KILL ME.

BASED ON YOUR
INTERNET HISTORY,
YOU MIGHT BE DUMB

What Is Machine Learning e

Traditional Programming

Dilbert.com DilbertCartoonist@gmail.com

— Program —

Input — Computation — Answer

Ae™
Specification —

Aeo™

Supervised Machine Learning

{<Input, Answer>} —»
— Program——

Computation

v
Program ——
Input ——

Computation — Answer
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Many approaches to Machine Learning

N ’
=Bayesian networks \-."'Jf:, ‘b (e

. | —
=Support vector machines —act®

=Reinforcement learning

=Artificial neural networks (ANN’s)
o Convolutional neural nets (CNN’s)

=Genetic algorithms

[-CIustering methods )

o K-means

= Classification methods
o K nearest neighbors
\_ & Y

=\Want to show you a high level view of ANN’s (current popular
method)

*"Then we will spend some time looking at simple clustering and
classification methods
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Artificial Neural Networks (ANNSs)

*ANN is Hidden

o Simplified model of the network . x x)
. . Input L L
of neurons in the brain W/lv
o Set of interconnected nodes W/ \()mpm
o Weights of connections can be
inhibitory or reinforcing

*Weights are trained via the back-
propagation algorithm, using a
lot of training data

*Early ANNs typically only had one
hidden layer, due to a lack of

data and limited computation
power to train more complex
models

* Modern ANNs have up to 1000
layers (SenseTime)
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An aside on back propagation

"For every node n, value is a function of inputs Hidden
x and weights w - in simple case

n = f (Z W; * xi) Input
i Q

=Given an input vector x and set of
intermediate layers, system computes a set of
outputs (e.g., each output node could be a
label, and inputs are set of features associated
with an example)

=Can measure error over a set of examples
between computed output y' and actual
labeled example y

You’ve seen this! Z [y’ — }’]2

examples

=Use gradient descent on the weights to
compute new set of weights that minimize
error You’ve seen this!

"Repeat with new training set of examples
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Deep Learning

=Deep Learning refersto complex neural networks
> Many hidden layers characterizing different aspects of the
observation

> Many powerful supervised/unsupervised training
algorithms

*Many kinds of deep learning networks— convolutional
neural nets particularly popular

=Deep learning currently a very popular method in
machine learning

C1:{eature maps
INPUT 3
32x32 6@28x28

C3: 1, maps 16@10x10
S4: 1. maps 16@5x5

S2: f. maps
6@14x14

Full connection Gaussian connections
Canvelutions Subsampling Convolutions  Subsampling Full connection
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Convolutional Neural Net: example

=Convolve image with set of filters (initially inspired by human system,
today weights of filters learned as part of the training)

"Pool and down-sample outputs (e.g., max pooling)
="Repeat multiple times (until have single layer of values)

*Train weights for classifier (e.g., using logistical regression)

(3?)(3? 28x28x%x20 14x14x20 10x10x20 5x5x20 3x3x20 1x1x300 1X1X6\
o
o
\ Q
é * \ ﬁ 0
5%X5 o
[] °
\ 2x2 ® \\
D/ ° N\
o
K Feature Learning Classificatign
Input layer C1-layer , C2-layer MP2-1: C3-layer Fully- Output layer
1 Map 20 Maps Kzﬁ]lell_d;iiz 20 Maps Kernel'd;(:z 20 Maps  connected Fully-
Neurons: 1024 Kernel: 5x5 ' Kernel: 5x5 ) Kernel: 3x3 layer connected
Extracting features into a vector Classifier (next time)
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Convolutional Neural Net: applications

(-'_ Sl (.; S n n
mput feature maps  feature maps feature maps feature maps output
32x32 28 x 28 14x 14 10x 10 5x5 recocnize digits
“ N\ 0N\ 0 from MNIST
L ) \ Y o1 database
] =z \\ SO\ N
e . — \ N\ © 8
SH- NN\ S
5x5 \: ) ‘ \\ OO \
X0 2x2 X0 - O
convolution \ subsampling convolution 2x2 \ \ O fully \
= subsampling \\ connected N
feature extraction

classification
LeCun, Bottou, Bengio, Haffner (1998)

sl = DLE
<R ek
(A = e
N T
Ttemho®

unsupervised learning of
hierarchical representations

Lee, Grosse, Ranganath, Ng (2009)

Masks initially hand coded; now learned through training

6.0002 LECTURE 10

41



SenseTime’s Face Recognition

=Uses an ANN with over 1000 layers
=Face verification —99.53% accuracy

"Face identification —96.0% accuracy (with error of 0.001%)
° Has been run against databases with 100M+ images

=Recognize faces with wide range of changes

05 Iﬁi b ﬁﬂ
0aap D a ’3.

Ramy Coral
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= 3
OUR MACHINE LEARNING [8] THAT SEEMS LIKE THE |: THERE'S ALWAYS
TECHNOLOGY ALLOWS US STEP THAT HAPPENS :| ONE PERSON IN EVERY
° ° TO TRACK CUSTOMER RIGHT BEFORE THE 2] CROWD WHO SAYS THAT.
PREFERENCES AND USE  |: MACHINES TAKE OVER &
THAT KNOWLEDGE TO THE EARTH AND ANNI- |¢ NOT FOR
MANIPULATE THEM. 5| HILATE ALL HUMANS. £ MUCH
) § \ 2 LONGER,
- 5 8 APPAR—
]| <» - | S : ENTLY.
b e 8 __N4K ; S
f : i)

" Observe set of examples: training data

" Infer something about process that generated that data —
learn a model that predicts data

o Regression: prediction is continuous
o E.g., predict what a student’s GPA will
o Classification: prediction is categorical
o E.g., predict whether astudent will majorin CS

= Use inference to make predictions about previously unseen
data: test data
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Basic ML Paradigm

"Observe set of examples:
training data

"Infer something about
process that generated
that data

=Use inference model to
make predictions about
previously unseen data:
test dat

Are these cats or dogs?

; AN |
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Returning to DeepMind’s AlphaGo

"AlphaGo used a Monte Carlo tree search algorithm to
find moves, based on knowledge learned using an
artificial neural network (ANN) trained against humans
and itself

o Uses reinforcement learning on an ANN to refine model

="AlphaGo Zero had no human input
c Had rules for generating legal moves

o Learned by playingitself
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The Training of AlphaGo Zero

5000

4000 -

3000 -

2000 -

Elo Rating

1000 -

-1000 -

-2000 -

| | I 1 | 1 1

0 5 10 15 20 25 30 35 40

—
-

=== AlphaGo Zero 40 blocks eees AlphaGo Lee seee AlphaGo Master
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Learning Paradigms

\ ' A T s
o = E L E
L ol e © N/
: " e, .- . ] . ’/’-”_‘L.*:-.{/.r\ .
X sty 4 ‘l‘ijs{","’\ \
. . ’. e - N / -,..‘ '\I
* [x IR 3
x | . . LN ":. : | \ ‘:/‘\_4//
. o
o\ X —3

Source: Utah CS Source: Quora

Ra'w Déta | ' CIu'sterea Darta
Unsupervised
Learning

Supervised
Learning

1 ™\ >
( i > Agent
1
o : P state reward action
1
H S R, A,
: Ro ()
I s.. | Environment |«
\_ ! J — )
IR N
o, ©
... '.'. N
0% ___ % X X 0| X 0 | X 0| X 0
’ S~ ) ~
o ! o N .. 7 ] 0 0 >0 |0 0|0
~ /I ee \ X X | X X | X X
== ee -~ 098
[ ™Y ( X J A B c D E
- o J

Source: Stanford CS and Nature
Source: Wikipedia

Reinforcement
Learning

Semi-Supervised
Learning
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Two Broad Classes

=Supervised: given a set of feature/label pairs, find a
rule that predicts the label associated with a previously
unseeninput

> New examples labeled by applying learned process

="Unsupervised: given a set of feature vectors (without
labels) group them into “natural clusters”

> New examples labeled by “nearest” cluster

N;

debt

N, popl_llation
sizes

N,

S | selection

statistics income

ayer
idden
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Some Algorithms

A A CIY
Veoe /@
= LT --‘\ A . » \.. ) Support
o Il . e @ @ / © vectors
’ R 08 4 +et ®/® o
' @
@

’ 1 ’
I \
1 ; 1 ' 06 - Support N e
: 1 vectors \
. | : 0.4 4
' Il
0.2 -
0.0

Source: https://medium.com/@hay dar_a i/ lear ning- data- science- day-11- sup port-vect or-mach ine-
8ef06da91bfc

X
https: //onlinecour ses. science. p su.edu /stat50 7/n ode /18
https://onlinecour ses. science. p su.edu/stat50 7/n ode /18

KNN Logistic Regression Support Vector Machines
1951 (Fix et al.) 1958 (Cox) 1963/1992 (Vapnik et al.)

Input Convolutional ~ Pooling  Fully Connected Output

Layer Layer Layer Layer Layer
| l :

T
P \‘
- 1
o !
4
4 IOR
| PRN
1 \ ~ 1
| y/ 1
1 M I
| 1
- ] E [: 1
| 1
— as — I |
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Neural Networks

Convolutional 1957/1986/1998/2006 Recurrent
Neural Networks /2012 Neural Networks
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All ML Methods Require:

" Choosing training data and evaluation method

= Representation of the features } Rest of

= Distance metric for feature vectors Today

Next

= Objective function and constraints
lecture

= Optimization method for learning the model
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Setting Up the Learning Framework

" How are we going to represent our

training data? NORWAY, 14 m.
o What features are important? A __ D
. DENMARK 23w
> How are they represented? (Typically NAPLES
we want features that can be SWEDEN
mapped to numerical values, so we POLAND
can measure distances between MEXICO.
examples) '
° Binary
° Integers
o Floats

= How do we measure distances
between feature vectors representing
instances?

o Relative scales of axes

o Distance metric
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Feature Representation

sFeatures never fully describe the situation

= Feature engineering

o Represent examples by feature vectors that will facilitate
generalization

o Suppose | want to use 100 examples from past to predict, at
the start of the subject, who will get an A in 6.0002

o Some features surely helpful, e.g., GPA, prior programming
experience (not a perfect predictor), mathematical
sophistication

o Others might cause me to over fit, e.g., birth month, eye
color, first letter of last name

= Want to maximize ratio of useful input to irrelevantinputin
choice of features

o Signal-to-Noise Ratio (SNR)

" How | choose to represent the range of each feature may
make it easier or harder to separate different classes
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Types of Reptlles

An Example

Features
Egg laying Poisonous | Cold- # legs Reptlle
blooded
Cobra True True True True
Initial model:

* Everything is a reptile (no features needed)
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Types of Reptile
An Example ® P
Features Label
| [
Egg-laying Poisonous | Cold-
blooded
Cobra True True True True 0 Yes
Chicken True True False False 2 No

New model to use feature:
* Poisonous or # legs
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An Example

Types of Reptlles

[Crocodile]

Skinl
'@ ?,

Features Label
blooded
Cobra True True True True 0 Yes
Chicken True True False False 2 No
Boa False True False True 0 Yes

constrictor

Current model:
e Poisonous

New Model:
e Hlegs=0

Boa doesn’t fit model,
reptile.
Need to refine model

but is labeled as
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An Example

Types of Reptlles
[SKink] [Crocodile]

@,?

Features

Egg-laying Poisonous | Cold- # legs Reptile
blooded

Cobra True True
Rattlesnake True True
Boa False True
constrictor

Chicken True True

Current model:
e Hlegs=0

True
True

False

False
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Types of Reptlles

[Crocodile]

An Example '@:»?

Features Label
m Egg-laying Scales Poisonous | Cold-
blooded
Cobra True True True True 0 Yes
Rattlesnake  True True True True 0 Yes
Boa False True False True 0 Yes

constrictor

Chicken True True False False 2 No

Alligator True True False True 4 Yes

Current model: New model:

e Hlegs=0 * Scales
* Cold blooded
e Legs!=2

Alligator doesn’t fit model, but is a
reptile.
Need to refine model

[
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Types of Reptlles

[Crocodile]

An Example R
d%.\;;? b
- Rt

Features Label
m Egg-laying Scales Poisonous | Cold- # legs
blooded
Cobra True True True True 0 Yes
Rattlesnake  True True True True 0 Yes
Boa False True False True 0 Yes

constrictor

Chicken True True False False 2 No
Alligator True True False True 4 Yes
Dart frog True False True False 4 No

Current model:
e Has scales
e (Cold blooded

v * Legs =2
Still okay
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Types of Reptiles

An Example

Features
m Egg-laying Scales Poisonous | Cold- # legs
blooded
Cobra True True True True 0 Yes
Rattlesnake  True True True True 0 Yes
Boa False True False True 0 Yes

constrictor

Chicken True True False False 2 No
Alligator True True False True 4 Yes
Dart frog True False True False 4 No
Salmon True True False True 0 No
Python True True False True 0 Yes
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Five Minute Break
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How do we learn to assign labels to examples?

" Have sets of examples represented as pointsin a
feature space — one dimension for each feature

" Intuition — examples with same label are close to one
another in feature space

o Do similar examples form one cluster, or several?

> Which features are most important in grouping similar
examples?

> What does “close” mean in feature space?

= Goal is to find way to group similar objects

o Use distance between examples to determine relevant
featuresand to associate a label with training examples
and with new instances
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Issues to consider in measuring distances

=Feature engineering:

o Decide which features to include and which are merely

adding noise to classifier

You’ve seen this! — variant of overfitting

> Define how to measure distances between training
examples (and ultimately between classifiers and new

instances)

> Decide how to weight relative importance of different
dimensions of feature vector, which impacts definition of
distance

You’ve seenthis! — also a variant of
overfitting
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Measuring Distance Between Animals

= We can think of our animal examples as consisting of
four binary features and one integer feature — 5D space

= One way to learn to separate reptiles from non-
reptiles is to measure the distance between pairs of
examples, and use that:

> To cluster nearby examplesintoa common class
(unlabeled data), or

> To find a classifier surface in space of examples that
optimally separates different (labeled) collections of
examples from other collections

rattlesnake = [1,1,1,1,0]

boa constrictor = [0,1,0,1,0] Fan convert examples
dart Frog = [1,0,1,0,4] into feature vectors

Features = [egg, scales, poisonous, cold, # legs]

6.0002 LECTURE 10 64




Minkowski Metric

dist(X1X2,p)= (Y abs(X1, - X2, ¥ )"’

p=1:
p=2:

len

Manhattan Distance

Euclidean Distance

Hermann
Minkowski

Need to measure
distances between
feature vectors

Typically use Euclidean

metric; Manhattan may

be appropriate if
different dimensions
are not comparable

|s circle closer to star or
Cross?
 Euclideandistance
Cross—2.8
Star—3
Manhattan Distance
* Cross—4

Star-3
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Euclidean Distance Between Animals

Features = [egg, scales, poisonous, cold, # legs]

rattlesnake = [1,1,1,1,0]
boa constrictor = [0,1,0,1,0]
dartFrog = [1,0,1,0,4]
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Euclidean Distance Between Animals

rattlesnake = [1,1,1,1,0] _ Code
boa constrictor = [0,1,0,1,0] “‘a‘o\e\“
dartFrog = [1,0,1,0,4] cee P
rattlesnake bog dart frog
- constrictor

rattlesnake - 1.414 4.243

poa

constrictor 1414 N 4.472

dart frog 4.243 4.472 -

Using Euclidean distance, rattlesnake and boa constrictor
are much closer to each other, than eitheris to dart frog
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Add an Alligator

alligator = Animal('alligator', [1,1,0,1,4])
animals.append(alligator)
compareAnimals(animals, 3)
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Add an Alligator

alligator = Animal('alligator', [1,1,0,1,4])
animals.append(alligator)
compareAnimals(animals, 3)

rattlesnake bog dartfrog | alligator
’ constrictor
rattlesnake - 1414 4.243 4.123
boa | 1414 = 4472 4123
dartfrog | 4243 | a4 -
alligator 4123 4.123 1.732 -
\ /|

Alligator is closer to dart frog than to snakes —why?

e Alligator differsfrom frogin 3 features, from boa in only 2 features
 Butscaleon “legs” isfrom 0 to 4, on otherfeaturesisOto1
 “legs” dimensionisdisproportionatelylarge
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Using Binary Features (Binarization)

rattlesnake = [1,1,1,1,0] Sca\eSr
boa constrictor = [0,1,0,1,0] (eS’\e%%’ “as\egs
dartFrog = [1,0,1,0,1] ;ea’t\) us,CO\d'
alligator = [1,1,0,1,1] po\so"‘o

rattlesnake boa dart frog alligator

constrictor

rattlesnake - 1414 1.732 1.414

boa 1.414 - 2.236 1.414
onstrictor

dart frog 1.732 2.236 -
alligator 1.414 1.414 1.732

Now alligator is closer to snakes than it is to dart frog—
makes more sense

Feature Engineering Matters
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Binarization vs. Scaling

= Suppose we care about number of legs, not just
whether animal has legs

= Scaling a more general solution
o Scale each feature separately

def scaleFeature(vals): _
vals = np.array(vals) Z-Scaling
mean = sum(vals)/len(vals) _
sd = np.std(vals) Mean = ?
vals = vals - mean Std = ?
return vals/sd

Try applying z-scaling to uniform and Gaussian
distributions
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Scaling Changes Values But Not Shapes

L1 L2

1000 - 3000 -
- 800 -

£ £ 2000 -
v 600 O
= =3
(on O
O 400 - o

L L 1000

200 -
0- 0-
0 200 400 600 800 1000 80 90 100 110 120
Feature Value Feature Value
L1 Z-scaled L2 Z-scaled

1000 - 3000 -
- 800 -

c £ 2000 -
o 600 - Q
-1 =
(on (o
Y 400 o

L L 1000

200 -
0- 0-
-1 0 1 -4 -2 0 2 4

Feature Value Feature Value
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Other Distance Metrics

= Minkowski distance is commonly used because it
naturally supports gradient descent methods

= But there are other distance metrics that are
sometimes more appropriate

= One common metric:
o Earth mover’s distance (EMD)
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Earth Mover’s Distance

= Given two distributions (or histograms),
what is the minimum amount of matter
(dirt) that has to be moved (cost is
amount to move times distance moved)
to make the distributions match
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Example: Earth Mover’s distance

=Cost is 1 mass unit by 1 distance unit—1
=Cost is 2 mass units by 1 distance unit—2

=Total costis 3 mass-distance units
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Some Observations

= Ordering of bins on axis is important, since distanceto

move “dirt” depends on this

= Makes sense to use EMD when

o Applying to probability distributions or to other
histograms with an inherent order to bins

° Intensitiesin an image
o Colorsin an image
o Or applying to settings with inherent spatial ordering
> Object movementin frames of a video sequence
> Wordsin a text document
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Coming Up

" In the next lecture, we will see examples of learning
algorithms

o When given unlabeled data, try to find clusters of
examples near each other

> When given labeled data, learn to classify examples

0.9 1
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St . K-Nearest Neighbors Classification
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Iteration #0
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