SEARCHING
AND SORTING

(download slides and .py files to follow along!)

6.0001 LECTURE 10

HALF-TERM EVALUATIONS

* You have until Thursday 9am to evaluate 6.0001
o http://web.mit.edu/subjectevaluation/evaluate.html

http://web.mit.edu/subjectevaluation/evaluate.html

6.0001 FINAL
Wednesday Oct 16

" |n lecture time 3pm to 4:30pm

= 2 sheets of paper allowed as aid

= Paper part, no electronic devices open

o If you finish early, work on programming problems with
pencil and paper

" Programming part, Python IDE and MITx only electronic
access

= Wednesday’s lecture is a review session

6.0001 LECTURE 11 8

LAST TIME

= Efficiency (memory and time)

= Complexity, order of growth, big oh notation
= Best, average, worst case scenario

= Linear, polynomial, exponential complexity examples

TODAY

= More classes of complexity and examples

= Searching and sorting algorithms

6.0001 LECTURE 10 4

MEASURING RUN-TIME

= Can time it by importing the time module

= Can count number of operations

= Can express the order of growth

PROBLEMS WITH TIMING AND
COUNTING

= Timing the exact running time of the program
* Depends on machine

* Depends on implementation
* Small inputs don’t show growth

= Counting the exact number of steps
* Machine independent, which is good

* Depends on implementation

* Multiplicative/additive constants are irrelevant for large
inputs

6.0001 LECTURE 10 6

G

MEASUR

ROW

T+

NG ORDER OF
: BIG OH NOTATION

= Big Oh notation measures an upper bound on the
asymptotic growth, often called order of growth

= Big Oh or O() is used to describe worst case

e Worst case occurs often and is the bottleneck when a
program runs

* Express rate of growth of program relative to the input
* Evaluate algorithm not machine or implementation

COMPLEXITY CLASSES

= O(1) denotes constant running time

= O(log n) denotes logarithmic running time
= O(n) denotes linear running time
= O(n log n) denotes log-linear running time

= O(n¢) denotes polynomial running time (c is a
constant)

= O(c") denotes exponential running time (cis a
constant being raised to a power based on size of
input)

6.0001 LECTURE 10 8

COMPLEXITY OF COMMON
PYTHON FUNCTIONS

= Lists:n is 1len (L) " Dictionaries: n is 1len (d)
* index O(1) = worst case
* store O(1) * index o(n)
* length O(1) * store O(n)
* append 0O(1) * length O(n)
¢ == O(n) * delete O(n)
° remove O(n) * iteration O(n)
° copy O(n) = average case
* reverse O(n) * index 0(1)
* jteration O(n) * store 0O(1)
* in list O(n) * delete 0(1)
* jteration O(n)

LOGARITHMIC
COMPLEXITY

TRICKY COMPLEXITY

def digit add(n):
""" 3ssume n an int >= Q0 """

answer = 0 QA
QO
s = str(n) '$<£@§0“§«\
for ¢ in s: Q@9‘®@§—Q
answer += int (c) o Qo‘(\

return answer

= Adds digits of a number together

" Tricky part
* Convert integer to string

* lterate over length of string, not magnitude of input n
* Think of it like dividing n by 10 each iteration

" O(log n) — base doesn’t matter

6.0001 LECTURE 10

LOGARITHMIC COMPLEXITY

= Complexity grows as log of size of one of its inputs

= Example: one bisection search implementation

= Example: binary search of a list

LOG LINEAR
COMPLEXITY

LOG-LINEAR COMPLEXITY

= Many practical programs are log-linear

= Commonly used log-linear algorithm is merge sort

= Will see this in a few slides

SEARCHING
ALGORITHMS

SEARCHING ALGORITHMS

= Linear search
* Brute force search

* List does not have to be sorted
e Saw this last time
* O(len(L))

= Bisection search
* List MUST be sorted to give correct answer

* Will see two different implementations of the algorithm

6.0001 LECTURE 10

BISECTION SEARCH

1) Pick an index, 1, that divides list in half
2)Askif L[1] == e

3) If not, ask if L[1] is larger or smaller than e

4) Depending on answer, search left or right half of L for e

= A new version of divide-and-conquer

= Break into smaller versions of problem (smaller list), plus
simple operations

= Answer to smaller version is answer to original version

6.0001 LECTURE 10

BIS

~CTION SEARCH

COMPLEXITY ANALYSIS

" Finish looking

N S\ s through list
NP wher
1© .
N o & 1= n/2'
N\ \ue\e«\e soi=logn
. —
e
N\ g1 = Complexity is
O(log n) —
\\ s where n is len(L)

BISECTION SEARCH
MPLEMENTATION 1

def bisect searchl (L, e): @™
. — CO(\S
if L == []: O\'&\
return False X
@®
elif len(L) == 1: dﬁﬁ\
\
return L[0] == e o\ QL
&3(\‘ O(\S\,a
else: djﬁ\ &Q\F5W§
half = len(L)//2 o> o0)
Q
if Llhalf] > e: r--=--= l ‘\d§€@
return bisect searchl (;L[:half], e) | WO
_ | I
else: F —————————— 1 ON¥$6
return bisect searchl (! L[half:]l, e) @Q‘C
— |

6.0001 LECTURE 10

COMPLEXITY OF
bisect searchl

* O(log n) bisection search calls
o Each recursive call cuts range to search in half

o Worst case to reach range of size 1 from n is when
n/2%=1 or when k = log n

o We do this to get an expression relating k to n

= O(n) for each bisection search call to copy list
o Cost to set up recursive call at each level of recursion
" O(log n) * O(n) = O(n log n) <- this is the answer in this class

= |f careful, notice list is also halved on each recursive call
o Infinite series
o 0O(n) is a tighter bound because copying list dominates log n

6.0001 LECTURE 10

-ARCH

MPLEMENTATION

6.0001 LECTURE 10

= Reduce size of
problem by factor
of 2 each step

Keep track of low
and high indices
to search list

= Avoid copying list

= Complexity of
recursion is
O(log n) — where
nis len(L)

BISECTION SEARCH
MPLEMENTATION 2

def bisect search2 (L, e):
def bisect search helper (L, e, low, high):
1f high == low:
return L[low] ==
mid = (low + high)//2
1f L[mid] ==
return True
elif L[mid] > e:
if low == mid: #nothing left to search
return False &Q
else:
return|bisect search helper (L, e, low, mid - 1)

else:
return|bisect search helper (L, e, mid + 1, high)
1f len (L) ==
return False @p
else:
return bisect search helper(L, e, 0, len(L) - 1)

6.0001 LECTURE 10

COMPLEXITY OF
bisect search2 and helper

= O(log n) bisection search calls
o Each recursive call cuts range to search in half

o Worst case to reach range of size 1 from nis when
n/2¥=1or whenk =logn

> We do this to get an expression relating k to n

= Pass list and indices as parameters
o List never copied, just re-passed

> 0O(1) on each recursive call

" O(log n) * O(1) = O(log n)

6.0001 LECTURE 10

SEARCHING A SORTED LIST
-nis len(L)

= Using linear search, search for an element is O(n)

= Using binary search, can search for an element in O(logn)
e assumes the list is sorted!

= When does it make sense to sort first then search?
* SORT+0O(log n)<0O(n) - SORT < O(n)-0(1log n)
* when sorting is less than O(n) -2 never true!

6.0001 LECTURE 10

AMORTIZED COST
-nis len(L)

= Why bother sorting first?

= Sort a list once then do many searches
= AMORTIZE cost of the sort over many searches
" SORT + K*O(log n)<K*O(n)

—> for large K, SORT time becomes irrelevant

SORTING
ALGORITHMS

BOGO/RANDOM/MONKEY
SORT

= aka bogosort,
stupidsort, slowsort,
randomsort,
shotgunsort

= To sort a deck of cards
 throw them in the air

* pick them up
 are they sorted?

* repeat if not sorted

COMPLEXITY OF BOGO SORT

def bogo sort(L):

while not 1is sorted(L):

random.shuffle (L)

= Best case: O(n) where n is len(L) to check if sorted

= Worst case: O(?) it is unbounded if really unlucky

BUBBLE SORT

= Compare consecutive
pairs of elements

= Swap elements in pair
such that smaller is first

= When reach end of list,
start over again

= Stop when no more
swaps have been made

Donald Knuth, in “The Art of Computer Programming”, said:
"the bubble sort seems to have nothing to recommend it, except a catchy name
and the fact that it leads to some interesting theoretical problems"

6.0001 LECTURE 10

COMPLEXITY OF BUBBLE SORT

def bubble sort(L):

swap = False &@0
while not swap: O\
swap = True W)
for 7 1in range(l, len (L)) : owg\
if L[j-1] > L[73]:
swap = False
temp = L[7]]
L[J] = L[j-1]
L[jJ-1] = temp

* Inner for loop is for doing the comparisons

= Quter while loop is for doing multiple passes until no more
swaps

= O(n?) where n is len(L)
to do len(L)-1 comparisons and len(L)-1 passes

6.0001 LECTURE 10

SELECTION SORT

= First step
e Extract minimum element

* Swap it with element at index 0

= Second step
* In remaining sublist, extract minimum element

* Swap it with the element at index 1

= Keep the left portion of the list sorted
* atith step, first i elements in list are sorted
* all other elements are bigger than first i elements

6.0001 LECTURE 10

COMPLEXITY OF SELECTION
SORT

S
def selection sort(L): \e(\\\)&\f\i\)\
e
for 1 in range (len(L)) : 20\\ .‘.\((\e‘)
A
for j in range (i, len(L)): \QOW\\QQ\“\
5N

if L[] < L[i]:

= Quter loop executes len(L) times
" Inner loop executes len(L) —i times

= Complexity of selection sort is O(n%) where n is len(L)

6.0001 LECTURE 10

5 Minute Break

MERGE SORT

= Divide and conquer

unsorted
unsorted unsorted
unsorted unsorted unsorted unsorted
unsor | [unsor | | unsor | [unsor unsor | [unsor unsor | [unsor
ted ted ted ted ted ted ted ted
~ ~ ~ ~ ~ ~ ~ ~

merge merge merge merge merge merge merge merge

= Split list in half until have sublists of only 1 element

6.0001 LECTURE 10

MERGE SORT

= Divide and conquer

unsorted
unsorted unsorted
unsorted unsorted unsorted unsorted
sq:brt sc:;rt sql:rt sq:rt sq:rt sql:rt sojrt scl):rt
~— ~_ ~_ ~—
merge merge merge merge

= Merge such that sublists will be sorted after merge

6.0001 LECTURE 10

MERGE SORT

= Divide and conquer

unsorted
unsorted unsorted
sorted sorted sorted sorted
\/ _/
merge merge

= Merge sorted sublists

= Sublists will be sorted after merge

6.0001 LECTURE 10

MERGE SORT

= Divide and conquer

unsorted

sorted sorted

merge

= Merge sorted sublists

= Sublists will be sorted after merge

6.0001 LECTURE 10

MERGE SORT

= Divide and conquer — done!

sorted

MERGING EXAMPLE

Left in list 1 Leftinlist2 Compare Result

([05,12,18,19,20] ([2)3,417] (1,2 >(D

(512,18,19,201 (23,4171 5(2) [

(512,18,19,20] ([3)4,17] 53) [4,
5, 4

[5,12,18,19,20] [4,17] [1,2,3]
[5,12,18,19,20] [17] 5,17 [1,2,3,4]
[12,18,19,20] [17] 12,17 [1,2,3,4,5]
[18,19,20] [17] 18, 17 [1,2,3,4,5,12]
[18,19,20]] 18, -- [1,2,3,4,5,12,17]

[] [] [1,2,3,4,5,12,17,18,19,20]

6.0001 LECTURE 10

MERGING SUBLISTS STEP

)
def merge (left, right): (9)\63
result = [] 6(.\%‘(\"—
i/j =0, O \e;‘_a(\ e(ed Sf\o(QO
while 1 < len(left) and j < len(right): - 0(6 _ d\(,e d\(\% e*’&
if left[i] < right[J]: A\ o“e\(\de(’e(\\\o\e’
result.append(left[i]) '«\b\'\g\f’ \o\'\‘)‘ e(\\,
. 3\ O
else: *lﬁ«seﬁ
result.append(right[j]) e
j += 1 X
X\
while (i < len(left)): 60(6é eﬁﬁjﬂ
result.append (left[i]) ﬂ$a ste’
. N\
1 +=1
X
while (j < len(right)): e(\\?f‘ 6@9‘\‘
result.append (right[j]) \QOXNS&ﬁ’
§ 4= 1 oV

return result

6.0001 LECTURE 10

COMPLEXITY OF
MERGING SUBLISTS STEP

= Go through two lists, only one pass

= Compare only smallest elements in each sublist
= O(len(left) + len(right)) copied elements

= O(len(longer list)) comparisons

= Linear in length of the lists

MERGE SORT ALGORITHM
-- RECURSIVE

def merge sort(L):

if len(L) < 2: ba(,ec"’c’e
return LJ[:]

else:
middle = len(L)//2
left = merge sort(L[:middle]) &g©9
right = merge sort (L[middle:]) 6¢N§@9
return merge(left, right) dﬁ@ieﬁps

N\

= Divide list successively into halves

= Depth-first such that conquer smallest pieces down
one branch first before moving to larger pieces

6.0001 LECTURE 10

841655920
Merge
/ 1468 &0259 N
01245689 *
8401 61— =920
Merge Merge
48 &16 59 &02
/ 1268 [\ /| 0259
sla |~ ~\1/6 sjg |~ .20
Merge Merge Merge Merge
48 16 59 02
8 4 1 6 5 9 2 0
base base base base | base base base base
case case case case | case case case case

6.0001 LECTURE 1

COMPLEXITY OF MERGE SORT

= At first recursion level
* n/2 elements in each list

* O(n) + O(n) = O(n) where nis len(L)

= At second recursion level
* n/4 elements in each list
* two merges =2 O(n) where nis len(L)

= Each recursion level is O(n) where n is len(L)

= Dividing list in half with each recursive call
* O(logn) where nis len(L)

= Overall complexity is O(n logn) where n is len(L)

6.0001 LECTURE 10

SORTING SUMMARY
-nis len(L)

= bogo sort
* randomness, unbounded O()

= bubble sort
* O(n?)

= selection sort
* 0O(n?)
* guaranteed the first i elements were sorted

= merge sort
* O(n logn)

* O(n logn) is the fastest a sort can be

SUMMARY

WHAT DID YOU LEARN?

= Python syntax

= Flow of control
o Loops, branching, exceptions

= Data structures

=0Organization, decomposition, abstraction
o Functions

o Classes

= Algorithms

= Computational complexity
> Big Oh notation

o Searching and sorting

6.0001 LECTURE 11

HOME STRETCH OF 6.0001

= Wednesday Oct 9
o TAs will conduct a review session for test

= Wednesday Oct 16
o Test in class

o Exam lectures are mandatory, no conflict exams are offered

= Monday Oct 21
o Start 6.0002

	SEARCHING �AND SORTING�(download slides and .py files to follow along!)
	HALF-TERM EVALUATIONS
	6.0001 FINAL �Wednesday Oct 16
	LAST TIME
	MEASURING RUN-TIME
	PROBLEMS WITH TIMING AND COUNTING
	MEASURING ORDER OF GROWTH: BIG OH NOTATION
	COMPLEXITY CLASSES
	COMPLEXITY OF COMMON PYTHON FUNCTIONS
	LOGARITHMIC COMPLEXITY
	TRICKY COMPLEXITY
	LOGARITHMIC COMPLEXITY
	LOG LINEAR COMPLEXITY
	LOG-LINEAR COMPLEXITY
	SEARCHING ALGORITHMS
	SEARCHING ALGORITHMS
	BISECTION SEARCH
	BISECTION SEARCH COMPLEXITY ANALYSIS
	BISECTION SEARCH IMPLEMENTATION 1
	COMPLEXITY OF bisect_search1
	BISECTION SEARCH ALTERNATE IMPLEMENTATION
	BISECTION SEARCH IMPLEMENTATION 2
	COMPLEXITY OF bisect_search2 and helper
	SEARCHING A SORTED LIST�-- n is len(L)
	AMORTIZED COST�-- n is len(L)
	SORTING ALGORITHMS
	BOGO/RANDOM/MONKEY SORT
	COMPLEXITY OF BOGO SORT
	BUBBLE SORT
	COMPLEXITY OF BUBBLE SORT
	SELECTION SORT
	COMPLEXITY OF SELECTION SORT
	5 Minute Break
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGING EXAMPLE
	MERGING SUBLISTS STEP
	COMPLEXITY OF �MERGING SUBLISTS STEP
	MERGE SORT ALGORITHM�-- RECURSIVE
	Slide Number 43
	COMPLEXITY OF MERGE SORT
	SORTING SUMMARY�-- n is len(L)
	SUMMARY
	WHAT DID YOU LEARN?
	HOME STRETCH OF 6.0001

