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 You have until Thursday 9am to evaluate 6.0001
◦ http://web.mit.edu/subjectevaluation/evaluate.html

HALF-TERM EVALUATIONS 
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6.0001 FINAL 
Wednesday Oct 16
 In lecture time 3pm to 4:30pm

 2 sheets of paper allowed as aid

 Paper part, no electronic devices open
◦ If you finish early, work on programming problems with 

pencil and paper

 Programming part, Python IDE and MITx only electronic 
access

Wednesday’s lecture is a review session
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LAST TIME
 Efficiency (memory and time)

 Complexity, order of growth, big oh notation

 Best, average, worst case scenario

 Linear, polynomial, exponential complexity examples

More classes of complexity and examples

 Searching and sorting algorithms
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MEASURING RUN-TIME
 Can time it by importing the time module

 Can count number of operations

 Can express the order of growth
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PROBLEMS WITH TIMING AND 
COUNTING
 Timing the exact running time of the program 

• Depends on machine 
• Depends on implementation
• Small inputs don’t show growth

 Counting the exact number of steps
• Machine independent, which is good
• Depends on implementation
• Multiplicative/additive constants are irrelevant for large 

inputs
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MEASURING ORDER OF 
GROWTH: BIG OH NOTATION
 Big Oh notation measures an upper bound on the 
asymptotic growth, often called order of growth

 Big Oh or O() is used to describe worst case
• Worst case occurs often and is the bottleneck when a 

program runs
• Express rate of growth of program relative to the input
• Evaluate algorithm not machine or implementation
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COMPLEXITY CLASSES
 O(1) denotes constant running time
 O(log n) denotes logarithmic running time
 O(n) denotes linear running time
 O(n log n) denotes log-linear running time
 O(nc) denotes polynomial running time (c is a 
constant)
 O(cn) denotes exponential running time (c is a 
constant being raised to a power based on size of 
input)
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COMPLEXITY OF COMMON 
PYTHON FUNCTIONS

 Dictionaries: n is len(d)
 worst case

• index O(n)
• store O(n)
• length O(n)
• delete O(n)
• iteration O(n)

 average case
• index O(1)
• store O(1)
• delete O(1)
• iteration O(n)

 Lists: n is len(L)
• index O(1)
• store O(1)
• length O(1)
• append O(1)
• == O(n)
• remove O(n)
• copy O(n)
• reverse O(n)
• iteration O(n)
• in list O(n)
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LOGARITHMIC 
COMPLEXITY
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TRICKY COMPLEXITY
def digit_add(n):

""" assume n an int >= 0 """
answer = 0
s = str(n)
for c in s:

answer += int(c)
return answer

 Adds digits of a number together
 Tricky part 

• Convert integer to string
• Iterate over length of string, not magnitude of input n
• Think of it like dividing n by 10 each iteration

 O(log n) – base doesn’t matter
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LOGARITHMIC COMPLEXITY
 Complexity grows as log of size of one of its inputs

 Example: one bisection search implementation

 Example: binary search of a list
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LOG LINEAR 
COMPLEXITY
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LOG-LINEAR COMPLEXITY
Many practical programs are log-linear

 Commonly used log-linear algorithm is merge sort

Will see this in a few slides
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SEARCHING 
ALGORITHMS
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SEARCHING ALGORITHMS
 Linear search

• Brute force search
• List does not have to be sorted
• Saw this last time
• O(len(L))

 Bisection search
• List MUST be sorted to give correct answer
• Will see two different implementations of the algorithm
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BISECTION SEARCH
1) Pick an index, i, that divides list in half
2) Ask if L[i] == e
3) If not, ask if L[i] is larger or smaller than e
4) Depending on answer, search left or right half of L for e

 A new version of divide-and-conquer
 Break into smaller versions of problem (smaller list), plus 
simple operations
 Answer to smaller version is answer to original version
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BISECTION SEARCH 
COMPLEXITY ANALYSIS

 Finish looking 
through list 
when 

1 = n/2i

so i = log n

 Complexity is 
O(log n) –
where n is len(L)

…

…
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BISECTION SEARCH 
IMPLEMENTATION 1
def bisect_search1(L, e):

if L == []:

return False

elif len(L) == 1:

return L[0] == e

else:

half = len(L)//2

if L[half] > e:

return bisect_search1( L[:half], e)

else:

return bisect_search1( L[half:], e)
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COMPLEXITY OF 
bisect_search1
 O(log n) bisection search calls
◦ Each recursive call cuts range to search in half
◦ Worst case to reach range of size 1 from n is  when 

n/2k = 1 or when k = log n
◦ We do this to get an expression relating k to n

 O(n) for each bisection search call to copy list 
◦ Cost to set up recursive call at each level of recursion

 O(log n) * O(n) = O(n log n) <- this is the answer in this class

 If careful, notice list is also halved on each recursive call
◦ Infinite series
◦ O(n) is a tighter bound because copying list dominates log n
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BISECTION SEARCH 
ALTERNATE IMPLEMENTATION
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 Reduce size of 
problem by factor 
of 2 each step 

 Keep track of low 
and high indices 
to search list

 Avoid copying list

 Complexity of 
recursion is 
O(log n) – where 
n is len(L)

…

…



def bisect_search2(L, e):
def bisect_search_helper(L, e, low, high):

if high == low:
return L[low] == e

mid = (low + high)//2
if L[mid] == e:

return True
elif L[mid] > e:

if low == mid: #nothing left to search
return False

else:
return bisect_search_helper(L, e, low, mid - 1)

else:
return bisect_search_helper(L, e, mid + 1, high)

if len(L) == 0:
return False

else:
return bisect_search_helper(L, e, 0, len(L) - 1)

BISECTION SEARCH 
IMPLEMENTATION 2
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COMPLEXITY OF 
bisect_search2 and helper
 O(log n) bisection search calls
◦ Each recursive call cuts range to search in half
◦ Worst case to reach range of size 1 from n is  when 

n/2k = 1 or when k = log n
◦ We do this to get an expression relating k to n

 Pass list and indices as parameters
◦ List never copied, just re-passed
◦ O(1) on each recursive call

 O(log n) * O(1) = O(log n)
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SEARCHING A SORTED LIST
-- n is len(L)
 Using linear search, search for an element is O(n)

 Using binary search, can search for an element in O(logn)
• assumes the list is sorted!

When does it make sense to sort first then search?
• SORT + O(log n) < O(n)  SORT < O(n) – O(log n)
• when sorting is less than O(n)  never true!
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AMORTIZED COST
-- n is len(L)
Why bother sorting first?

 Sort a list once then do many searches

 AMORTIZE cost of the sort over many searches

 SORT + K*O(log n) < K*O(n) 

 for large K, SORT time becomes irrelevant
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SORTING 
ALGORITHMS
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BOGO/RANDOM/MONKEY 
SORT
 aka bogosort, 
stupidsort, slowsort, 
randomsort, 
shotgunsort

 To sort a deck of cards
• throw them in the air
• pick them up
• are they sorted? 
• repeat if not sorted
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COMPLEXITY OF BOGO SORT
def bogo_sort(L):

while not is_sorted(L):

random.shuffle(L)

 Best case: O(n) where n is len(L) to check if sorted

Worst case: O(?) it is unbounded if really unlucky

6.0001 LECTURE 10 28



BUBBLE SORT
 Compare consecutive 
pairs of elements

 Swap elements in pair 
such that smaller is first

When reach end of list, 
start over again

 Stop when no more 
swaps have been made
Donald Knuth, in “The Art of Computer Programming”, said: 
"the bubble sort seems to have nothing to recommend it, except a catchy name 
and the fact that it leads to some interesting theoretical problems"
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COMPLEXITY OF BUBBLE SORT
def bubble_sort(L):

swap = False
while not swap:

swap = True
for j in range(1, len(L)):

if L[j-1] > L[j]:
swap = False
temp = L[j]
L[j] = L[j-1]
L[j-1] = temp

 Inner for loop is for doing the comparisons
 Outer while loop is for doing multiple passes until no more 
swaps
 O(n2) where n is len(L) 

to do len(L)-1 comparisons and len(L)-1 passes
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SELECTION SORT
 First step

• Extract minimum element 
• Swap it with element at index 0

 Second step
• In remaining sublist, extract minimum element
• Swap it with the element at index 1

 Keep the left portion of the list sorted 
• at ith step, first i elements in list are sorted
• all other elements are bigger than first i elements
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COMPLEXITY OF SELECTION 
SORT
def selection_sort(L):

for i in range(len(L)):

for j in range(i, len(L)):

if L[j] < L[i]:

L[i], L[j] = L[j], L[i]

 Outer loop executes len(L) times

 Inner loop executes len(L) – i times

 Complexity of selection sort is O(n2) where n is len(L)
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5 Minute Break
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MERGE SORT
 Divide and conquer

 Split list in half until have sublists of only 1 element

unsorted

unsorted unsorted

unsorted unsorted unsorted unsorted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

merge merge merge merge merge merge merge merge
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MERGE SORT
 Divide and conquer

Merge such that sublists will be sorted after merge

unsorted

unsorted unsorted

unsorted unsorted unsorted unsorted

sort sort sort sort sort sort sort sort

merge merge merge merge
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MERGE SORT
 Divide and conquer

Merge sorted sublists

 Sublists will be sorted after merge

unsorted

unsorted unsorted

sorted sorted sorted sorted

merge merge
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MERGE SORT
 Divide and conquer

Merge sorted sublists

 Sublists will be sorted after merge

unsorted

sorted sorted

merge
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MERGE SORT
 Divide and conquer – done!

sorted
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MERGING EXAMPLE 
Left in list 1               Left in list 2      Compare         Result
[1,5,12,18,19,20]     [2,3,4,17]         1, 2                   []
[5,12,18,19,20]         [2,3,4,17]         5, 2                  [1]
[5,12,18,19,20]         [3,4,17]            5, 3                  [1,2]
[5,12,18,19,20]         [4,17]               5, 4                  [1,2,3]
[5,12,18,19,20]         [17]                  5, 17                [1,2,3,4]
[12,18,19,20]            [17]                  12, 17              [1,2,3,4,5]
[18,19,20]                  [17]                  18, 17             [1,2,3,4,5,12]
[18,19,20]                  []                      18, -- [1,2,3,4,5,12,17]
[]                                  []                                              [1,2,3,4,5,12,17,18,19,20]

6.0001 LECTURE 10 39



MERGING SUBLISTS STEP
def merge(left, right):

result = []

i,j = 0, 0

while i < len(left) and j < len(right):

if left[i] < right[j]:

result.append(left[i])

i += 1

else:

result.append(right[j])

j += 1

while (i < len(left)):

result.append(left[i])

i += 1

while (j < len(right)):

result.append(right[j])

j += 1

return result
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COMPLEXITY OF 
MERGING SUBLISTS STEP
 Go through two lists, only one pass

 Compare only smallest elements in each sublist

 O(len(left) + len(right)) copied elements

 O(len(longer list)) comparisons

 Linear in length of the lists
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MERGE SORT ALGORITHM
-- RECURSIVE
def merge_sort(L):

if len(L) < 2:

return L[:]

else:

middle = len(L)//2

left = merge_sort(L[:middle])

right = merge_sort(L[middle:])

return merge(left, right)

 Divide list successively into halves

 Depth-first such that conquer smallest pieces down 
one branch first before moving to larger pieces
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COMPLEXITY OF MERGE SORT
 At first recursion level

• n/2 elements in each list
• O(n) + O(n) = O(n) where n is len(L)

 At second recursion level
• n/4 elements in each list
• two merges  O(n) where n is len(L)

 Each recursion level is O(n) where n is len(L) 
 Dividing list in half with each recursive call

• O(logn) where n is len(L)

 Overall complexity is O(n logn) where n is len(L)
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SORTING SUMMARY
-- n is len(L)
 bogo sort

• randomness, unbounded O()

 bubble sort
• O(n2)

 selection sort
• O(n2)
• guaranteed the first i elements were sorted

merge sort
• O(n logn)

 O(n logn) is the fastest a sort can be
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SUMMARY
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 Python syntax
 Flow of control
◦ Loops, branching, exceptions

 Data structures
Organization, decomposition, abstraction
◦ Functions
◦ Classes

 Algorithms
 Computational complexity
◦ Big Oh notation
◦ Searching and sorting

WHAT DID YOU LEARN?
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Wednesday Oct 9
◦ TAs will conduct a review session for test

Wednesday Oct 16
◦ Test in class
◦ Exam lectures are mandatory, no conflict exams are offered

Monday Oct 21
◦ Start 6.0002

HOME STRETCH OF 6.0001
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