
SEARCHING
AND SORTING
(download slides and .py files to follow along!)

6.0001 LECTURE 10

6.0001 LECTURE 10 1

 You have until Thursday 9am to evaluate 6.0001
◦ http://web.mit.edu/subjectevaluation/evaluate.html

HALF-TERM EVALUATIONS

6.0001 LECTURE 11 2

http://web.mit.edu/subjectevaluation/evaluate.html

6.0001 FINAL
Wednesday Oct 16
 In lecture time 3pm to 4:30pm

 2 sheets of paper allowed as aid

 Paper part, no electronic devices open
◦ If you finish early, work on programming problems with

pencil and paper

 Programming part, Python IDE and MITx only electronic
access

Wednesday’s lecture is a review session

6.0001 LECTURE 11 3

LAST TIME
 Efficiency (memory and time)

 Complexity, order of growth, big oh notation

 Best, average, worst case scenario

 Linear, polynomial, exponential complexity examples

More classes of complexity and examples

 Searching and sorting algorithms

6.0001 LECTURE 10 4

TODAY

MEASURING RUN-TIME
 Can time it by importing the time module

 Can count number of operations

 Can express the order of growth

6.0001 LECTURE 10 5

PROBLEMS WITH TIMING AND
COUNTING
 Timing the exact running time of the program

• Depends on machine
• Depends on implementation
• Small inputs don’t show growth

 Counting the exact number of steps
• Machine independent, which is good
• Depends on implementation
• Multiplicative/additive constants are irrelevant for large

inputs

6.0001 LECTURE 10 6

MEASURING ORDER OF
GROWTH: BIG OH NOTATION
 Big Oh notation measures an upper bound on the
asymptotic growth, often called order of growth

 Big Oh or O() is used to describe worst case
• Worst case occurs often and is the bottleneck when a

program runs
• Express rate of growth of program relative to the input
• Evaluate algorithm not machine or implementation

6.0001 LECTURE 10 7

COMPLEXITY CLASSES
 O(1) denotes constant running time
 O(log n) denotes logarithmic running time
 O(n) denotes linear running time
 O(n log n) denotes log-linear running time
 O(nc) denotes polynomial running time (c is a
constant)
 O(cn) denotes exponential running time (c is a
constant being raised to a power based on size of
input)

6.0001 LECTURE 10 8

COMPLEXITY OF COMMON
PYTHON FUNCTIONS

 Dictionaries: n is len(d)
 worst case

• index O(n)
• store O(n)
• length O(n)
• delete O(n)
• iteration O(n)

 average case
• index O(1)
• store O(1)
• delete O(1)
• iteration O(n)

 Lists: n is len(L)
• index O(1)
• store O(1)
• length O(1)
• append O(1)
• == O(n)
• remove O(n)
• copy O(n)
• reverse O(n)
• iteration O(n)
• in list O(n)

6.0001 LECTURE 10 9

LOGARITHMIC
COMPLEXITY

6.0001 LECTURE 10 10

TRICKY COMPLEXITY
def digit_add(n):

""" assume n an int >= 0 """
answer = 0
s = str(n)
for c in s:

answer += int(c)
return answer

 Adds digits of a number together
 Tricky part

• Convert integer to string
• Iterate over length of string, not magnitude of input n
• Think of it like dividing n by 10 each iteration

 O(log n) – base doesn’t matter

6.0001 LECTURE 10 11

LOGARITHMIC COMPLEXITY
 Complexity grows as log of size of one of its inputs

 Example: one bisection search implementation

 Example: binary search of a list

6.0001 LECTURE 10 12

LOG LINEAR
COMPLEXITY

6.0001 LECTURE 10 13

LOG-LINEAR COMPLEXITY
Many practical programs are log-linear

 Commonly used log-linear algorithm is merge sort

Will see this in a few slides

6.0001 LECTURE 10 14

SEARCHING
ALGORITHMS

6.0001 LECTURE 10 15

SEARCHING ALGORITHMS
 Linear search

• Brute force search
• List does not have to be sorted
• Saw this last time
• O(len(L))

 Bisection search
• List MUST be sorted to give correct answer
• Will see two different implementations of the algorithm

6.0001 LECTURE 10 16

BISECTION SEARCH
1) Pick an index, i, that divides list in half
2) Ask if L[i] == e
3) If not, ask if L[i] is larger or smaller than e
4) Depending on answer, search left or right half of L for e

 A new version of divide-and-conquer
 Break into smaller versions of problem (smaller list), plus
simple operations
 Answer to smaller version is answer to original version

6.0001 LECTURE 10 17

BISECTION SEARCH
COMPLEXITY ANALYSIS

 Finish looking
through list
when

1 = n/2i

so i = log n

 Complexity is
O(log n) –
where n is len(L)

…

…

6.0001 LECTURE 10 18

BISECTION SEARCH
IMPLEMENTATION 1
def bisect_search1(L, e):

if L == []:

return False

elif len(L) == 1:

return L[0] == e

else:

half = len(L)//2

if L[half] > e:

return bisect_search1(L[:half], e)

else:

return bisect_search1(L[half:], e)

6.0001 LECTURE 10 19

COMPLEXITY OF
bisect_search1
 O(log n) bisection search calls
◦ Each recursive call cuts range to search in half
◦ Worst case to reach range of size 1 from n is when

n/2k = 1 or when k = log n
◦ We do this to get an expression relating k to n

 O(n) for each bisection search call to copy list
◦ Cost to set up recursive call at each level of recursion

 O(log n) * O(n) = O(n log n) <- this is the answer in this class

 If careful, notice list is also halved on each recursive call
◦ Infinite series
◦ O(n) is a tighter bound because copying list dominates log n

6.0001 LECTURE 10 20

BISECTION SEARCH
ALTERNATE IMPLEMENTATION

6.0001 LECTURE 10 21

 Reduce size of
problem by factor
of 2 each step

 Keep track of low
and high indices
to search list

 Avoid copying list

 Complexity of
recursion is
O(log n) – where
n is len(L)

…

…

def bisect_search2(L, e):
def bisect_search_helper(L, e, low, high):

if high == low:
return L[low] == e

mid = (low + high)//2
if L[mid] == e:

return True
elif L[mid] > e:

if low == mid: #nothing left to search
return False

else:
return bisect_search_helper(L, e, low, mid - 1)

else:
return bisect_search_helper(L, e, mid + 1, high)

if len(L) == 0:
return False

else:
return bisect_search_helper(L, e, 0, len(L) - 1)

BISECTION SEARCH
IMPLEMENTATION 2

6.0001 LECTURE 10 22

COMPLEXITY OF
bisect_search2 and helper
 O(log n) bisection search calls
◦ Each recursive call cuts range to search in half
◦ Worst case to reach range of size 1 from n is when

n/2k = 1 or when k = log n
◦ We do this to get an expression relating k to n

 Pass list and indices as parameters
◦ List never copied, just re-passed
◦ O(1) on each recursive call

 O(log n) * O(1) = O(log n)

6.0001 LECTURE 10 23

SEARCHING A SORTED LIST
-- n is len(L)
 Using linear search, search for an element is O(n)

 Using binary search, can search for an element in O(logn)
• assumes the list is sorted!

When does it make sense to sort first then search?
• SORT + O(log n) < O(n)  SORT < O(n) – O(log n)
• when sorting is less than O(n)  never true!

6.0001 LECTURE 10 24

AMORTIZED COST
-- n is len(L)
Why bother sorting first?

 Sort a list once then do many searches

 AMORTIZE cost of the sort over many searches

 SORT + K*O(log n) < K*O(n)

 for large K, SORT time becomes irrelevant

6.0001 LECTURE 10 25

SORTING
ALGORITHMS

6.0001 LECTURE 10 26

BOGO/RANDOM/MONKEY
SORT
 aka bogosort,
stupidsort, slowsort,
randomsort,
shotgunsort

 To sort a deck of cards
• throw them in the air
• pick them up
• are they sorted?
• repeat if not sorted

6.0001 LECTURE 10 27

COMPLEXITY OF BOGO SORT
def bogo_sort(L):

while not is_sorted(L):

random.shuffle(L)

 Best case: O(n) where n is len(L) to check if sorted

Worst case: O(?) it is unbounded if really unlucky

6.0001 LECTURE 10 28

BUBBLE SORT
 Compare consecutive
pairs of elements

 Swap elements in pair
such that smaller is first

When reach end of list,
start over again

 Stop when no more
swaps have been made
Donald Knuth, in “The Art of Computer Programming”, said:
"the bubble sort seems to have nothing to recommend it, except a catchy name
and the fact that it leads to some interesting theoretical problems"

6.0001 LECTURE 10 29

COMPLEXITY OF BUBBLE SORT
def bubble_sort(L):

swap = False
while not swap:

swap = True
for j in range(1, len(L)):

if L[j-1] > L[j]:
swap = False
temp = L[j]
L[j] = L[j-1]
L[j-1] = temp

 Inner for loop is for doing the comparisons
 Outer while loop is for doing multiple passes until no more
swaps
 O(n2) where n is len(L)

to do len(L)-1 comparisons and len(L)-1 passes
6.0001 LECTURE 10 30

SELECTION SORT
 First step

• Extract minimum element
• Swap it with element at index 0

 Second step
• In remaining sublist, extract minimum element
• Swap it with the element at index 1

 Keep the left portion of the list sorted
• at ith step, first i elements in list are sorted
• all other elements are bigger than first i elements

6.0001 LECTURE 10 31

COMPLEXITY OF SELECTION
SORT
def selection_sort(L):

for i in range(len(L)):

for j in range(i, len(L)):

if L[j] < L[i]:

L[i], L[j] = L[j], L[i]

 Outer loop executes len(L) times

 Inner loop executes len(L) – i times

 Complexity of selection sort is O(n2) where n is len(L)

6.0001 LECTURE 10 32

5 Minute Break

6.0001 LECTURE 10 33

CODING RIGHT BEFORE THE DEADLINE LIKE

MERGE SORT
 Divide and conquer

 Split list in half until have sublists of only 1 element

unsorted

unsorted unsorted

unsorted unsorted unsorted unsorted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

merge merge merge merge merge merge merge merge

6.0001 LECTURE 10 34

MERGE SORT
 Divide and conquer

Merge such that sublists will be sorted after merge

unsorted

unsorted unsorted

unsorted unsorted unsorted unsorted

sort sort sort sort sort sort sort sort

merge merge merge merge

6.0001 LECTURE 10 35

MERGE SORT
 Divide and conquer

Merge sorted sublists

 Sublists will be sorted after merge

unsorted

unsorted unsorted

sorted sorted sorted sorted

merge merge

6.0001 LECTURE 10 36

MERGE SORT
 Divide and conquer

Merge sorted sublists

 Sublists will be sorted after merge

unsorted

sorted sorted

merge

6.0001 LECTURE 10 37

MERGE SORT
 Divide and conquer – done!

sorted

6.0001 LECTURE 10 38

MERGING EXAMPLE
Left in list 1 Left in list 2 Compare Result
[1,5,12,18,19,20] [2,3,4,17] 1, 2 []
[5,12,18,19,20] [2,3,4,17] 5, 2 [1]
[5,12,18,19,20] [3,4,17] 5, 3 [1,2]
[5,12,18,19,20] [4,17] 5, 4 [1,2,3]
[5,12,18,19,20] [17] 5, 17 [1,2,3,4]
[12,18,19,20] [17] 12, 17 [1,2,3,4,5]
[18,19,20] [17] 18, 17 [1,2,3,4,5,12]
[18,19,20] [] 18, -- [1,2,3,4,5,12,17]
[] [] [1,2,3,4,5,12,17,18,19,20]

6.0001 LECTURE 10 39

MERGING SUBLISTS STEP
def merge(left, right):

result = []

i,j = 0, 0

while i < len(left) and j < len(right):

if left[i] < right[j]:

result.append(left[i])

i += 1

else:

result.append(right[j])

j += 1

while (i < len(left)):

result.append(left[i])

i += 1

while (j < len(right)):

result.append(right[j])

j += 1

return result

6.0001 LECTURE 10 40

COMPLEXITY OF
MERGING SUBLISTS STEP
 Go through two lists, only one pass

 Compare only smallest elements in each sublist

 O(len(left) + len(right)) copied elements

 O(len(longer list)) comparisons

 Linear in length of the lists

6.0001 LECTURE 10 41

MERGE SORT ALGORITHM
-- RECURSIVE
def merge_sort(L):

if len(L) < 2:

return L[:]

else:

middle = len(L)//2

left = merge_sort(L[:middle])

right = merge_sort(L[middle:])

return merge(left, right)

 Divide list successively into halves

 Depth-first such that conquer smallest pieces down
one branch first before moving to larger pieces

6.0001 LECTURE 10 42

6.0001 LECTURE 1 43

8 4 1 6 5 9 2 0

8 4 1 6

8 4

8

base
case

4

base
case

1 6

1

base
case

6

base
case

Merge
4 8

Merge
4 8 & 1 6

1 4 6 8

Merge
1 6

5 9 2 0

5 9

5

base
case

9

base
case

2 0

2

base
case

0

base
case

Merge
5 9

Merge
5 9 & 0 2

0 2 5 9

Merge
0 2

Merge
1 4 6 8 & 0 2 5 9

0 1 2 4 5 6 8 9

COMPLEXITY OF MERGE SORT
 At first recursion level

• n/2 elements in each list
• O(n) + O(n) = O(n) where n is len(L)

 At second recursion level
• n/4 elements in each list
• two merges  O(n) where n is len(L)

 Each recursion level is O(n) where n is len(L)
 Dividing list in half with each recursive call

• O(logn) where n is len(L)

 Overall complexity is O(n logn) where n is len(L)

6.0001 LECTURE 10 44

SORTING SUMMARY
-- n is len(L)
 bogo sort

• randomness, unbounded O()

 bubble sort
• O(n2)

 selection sort
• O(n2)
• guaranteed the first i elements were sorted

merge sort
• O(n logn)

 O(n logn) is the fastest a sort can be

6.0001 LECTURE 10 45

SUMMARY

6.0001 LECTURE 10 46

 Python syntax
 Flow of control
◦ Loops, branching, exceptions

 Data structures
Organization, decomposition, abstraction
◦ Functions
◦ Classes

 Algorithms
 Computational complexity
◦ Big Oh notation
◦ Searching and sorting

WHAT DID YOU LEARN?

6.0001 LECTURE 11 47

Wednesday Oct 9
◦ TAs will conduct a review session for test

Wednesday Oct 16
◦ Test in class
◦ Exam lectures are mandatory, no conflict exams are offered

Monday Oct 21
◦ Start 6.0002

HOME STRETCH OF 6.0001

6.0001 LECTURE 11 48

	SEARCHING �AND SORTING�(download slides and .py files to follow along!)
	HALF-TERM EVALUATIONS
	6.0001 FINAL �Wednesday Oct 16
	LAST TIME
	MEASURING RUN-TIME
	PROBLEMS WITH TIMING AND COUNTING
	MEASURING ORDER OF GROWTH: BIG OH NOTATION
	COMPLEXITY CLASSES
	COMPLEXITY OF COMMON PYTHON FUNCTIONS
	LOGARITHMIC COMPLEXITY
	TRICKY COMPLEXITY
	LOGARITHMIC COMPLEXITY
	LOG LINEAR COMPLEXITY
	LOG-LINEAR COMPLEXITY
	SEARCHING ALGORITHMS
	SEARCHING ALGORITHMS
	BISECTION SEARCH
	BISECTION SEARCH COMPLEXITY ANALYSIS
	BISECTION SEARCH IMPLEMENTATION 1
	COMPLEXITY OF bisect_search1
	BISECTION SEARCH ALTERNATE IMPLEMENTATION
	BISECTION SEARCH IMPLEMENTATION 2
	COMPLEXITY OF bisect_search2 and helper
	SEARCHING A SORTED LIST�-- n is len(L)
	AMORTIZED COST�-- n is len(L)
	SORTING ALGORITHMS
	BOGO/RANDOM/MONKEY SORT
	COMPLEXITY OF BOGO SORT
	BUBBLE SORT
	COMPLEXITY OF BUBBLE SORT
	SELECTION SORT
	COMPLEXITY OF SELECTION SORT
	5 Minute Break
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGE SORT
	MERGING EXAMPLE
	MERGING SUBLISTS STEP
	COMPLEXITY OF �MERGING SUBLISTS STEP
	MERGE SORT ALGORITHM�-- RECURSIVE
	Slide Number 43
	COMPLEXITY OF MERGE SORT
	SORTING SUMMARY�-- n is len(L)
	SUMMARY
	WHAT DID YOU LEARN?
	HOME STRETCH OF 6.0001

