
WELCOME!
(download slides and .py files to follow along)

6.0001 LECTURE 1

Ana Bell

16.0001 LECTURE 1

TODAY

 Course info

What is computation

 Python basics
Mathematical operations
Python variables and types

 Flow of control

 NOTE: slides and code files up before each lecture
oHighly encourage you to download them before lecture
o Take notes and run code files when I do
oBring computers to answer in-class practice exercises!

26.0001 LECTURE 1

COURSE INFO

 Course site
◦ mit.edu/~6.00
◦ links to Piazza, MITx, Calendar, Grades, Psets, course policies

 Last day we accept adds is Wednesday Sept 11

 Post privately on Piazza if have problems with schedule

 Course uses Python 3.5 and higher

 Prerequisites
◦ High school math
◦ MIT-caliber brain
◦ Little or no programming experience

36.0001 LECTURE 1

http://www.mit.edu/%7E6.00

COURSE POLICIES

 Collaboration
◦ Okay
◦ Helping others debug
◦ Discussing general attack on problem

◦ Not okay
◦ Copying code (from others in class or previous years)
◦ Side-by-side coding
◦ Showing/sending code to others

◦ Provide names of all “collaborators” on submission
◦ We will be running a code similarity program on all psets

 Extensions
◦ We consider extensions only with S^3 support
◦ Late days, 3 to use per half semester

46.0001 LECTURE 1

Grading, Problem Sets and Finger Exercises

 Problem sets
◦ Worth 30% of final grade
◦ 5 problem sets, weekly, hand in online
◦ Score based on 2 components

1. How many test cases you pass (calculated automatically)
2. Checkoff for code style and explanation of code

◦ Checkoffs starting with pset 1
◦ In office hours for the 10 days following the initial due date

 Finger exercises on MITx
◦ Worth 10% of final grade for mandatory finger exercises
◦ One for each lecture, due by the beginning of the next

lecture

6.0001 LECTURE 1 5

Grading, Exams and Quizzes

Microquizzes
◦ During class, in the last 20 mins of some lectures (see calendar)
◦ No makeups!
◦ Must have computer with wireless connection
◦ If you need special accommodations, contact us asap
◦ 3 of them
◦ Worth 20%
◦ Best 2 out of 3

 Exam (in-class)
◦ Worth 40% on Oct 16 (see calendar)
◦ Exams will cover material from lectures, problem sets, and

assigned readings

6.0001 LECTURE 1 6

Fast-paced Subject

 Position yourself to succeed!
◦ Read psets when they come out
◦ Save late days for emergency situations

 Learning to program
◦ Can’t passively absorb programming as a skill
◦ Download code before lecture and follow along
◦ Do MITx optional finger exercises
◦ Get help early
◦ Piazza, office hours, HKN tutoring
◦ Optional recitations Fridays 11am, 12pm, and 1pm

 Have fun

76.0001 LECTURE 1

TOPICS

 6.0001
◦ Solving problems using computation
◦ Python programming language
◦ Organizing modular programs
◦ Some simple but important algorithms
◦ Algorithmic complexity

 6.0002
◦ Using computation to model the world
◦ Simulation models
◦ Understanding data

6.0001 LECTURE 1 8

LET’S GO!

6.0001 LECTURE 1 9

Assigned Reading

 Chapter 1

 Sections 2.1 – 2.3

6.0001 LECTURE 1 10

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised_083117.pdf

TYPES OF KNOWLEDGE

 Declarative knowledge is statements of fact
◦ Someone will eat candy during class

 Imperative knowledge is a recipe or “how-to”
◦ (1) Walk to front of class
◦ (2) Pick up candy
◦ (3) Walk back to seat
◦ (4) Unwrap candy
◦ (5) Eat!
◦ etc.

 Programming is about writing recipes to generate facts

6.0001 LECTURE 1 11

Animated GIF - Find & Share on GIPHY - Google Chrome

Microsoft Game DVR

A NUMERICAL EXAMPLE

 Square root of a number x is y such that y*y = x

 Start with a guess, g
1) If g*g is close enough to x, stop and say g is the answer
2) Otherwise make a new guess by averaging g and x/g
3) Using the new guess, repeat process until close enough

 Let’s try it for x = 16 and an initial guess of 3

6.0001 LECTURE 1 12

g g*g x/g (g+x/g)/2

3 9 16/3 4.17

A NUMERICAL EXAMPLE

 Square root of a number x is y such that y*y = x

 Start with a guess, g
1) If g*g is close enough to x, stop and say g is the answer
2) Otherwise make a new guess by averaging g and x/g
3) Using the new guess, repeat process until close enough

 Let’s try it for x = 16 and an initial guess of 3

6.0001 LECTURE 1 13

g g*g x/g (g+x/g)/2

3 9 16/3 4.17

4.17 17.36 3.837 4.0035

A NUMERICAL EXAMPLE

 Square root of a number x is y such that y*y = x

 Start with a guess, g
1) If g*g is close enough to x, stop and say g is the answer
2) Otherwise make a new guess by averaging g and x/g
3) Using the new guess, repeat process until close enough

 Let’s try it for x = 16 and an initial guess of 3

6.0001 LECTURE 1 14

g g*g x/g (g+x/g)/2

3 9 16/3 4.17

4.17 17.36 3.837 4.0035

4.0035 16.0277 3.997 4.000002

What We Have Here is an Algorithm

1) Sequence of simple steps

2) Flow of control process that
specifies when each step is
executed

3) A means of determining when
to stop

6.0001 LECTURE 1 15

Computers are Machines that Execute Algorithms

 Two things computers do:
◦ Performs simple operations

100s of billions per second!
◦ Remembers results

100s of gigabytes of storage!

What kinds of calculations?
◦ Built-in to the machine, e.g., +
◦ Ones that you define as the programmer

 The BIG IDEA here?

6.0001 LECTURE 1 16

A computer will only do what you tell it to do
#programmer #computerscience

6.0001 LECTURE 1 17

Computers Are Machines that Execute Algorithms

 Fixed program computer
◦ Fixed set of algorithms
◦ What we had until 1940’s

 Stored program computer
◦ Machine stores and executes

instructions

 Key insight: Programs are no
different from other kinds of data

6.0001 LECTURE 1 18

STORED PROGRAM COMPUTER

6.0001 LECTURE 1 19

 Sequence of instructions stored inside computer
◦ Built from predefined set of primitive instructions

1) Arithmetic and logical
2) Simple tests
3) Moving data

 Special program (interpreter) executes each instruction in
order
◦ Use tests to change flow of control through sequence
◦ Stops when it runs out of instructions or executes a halt

instruction

BASIC PRIMITIVES

 Turing showed that you can compute anything with a very
simple machine with only 6 primitives: left, right, print, scan,
erase, no op

 Real programming languages have
◦ More convenient set of primitives
◦ Ways to combine primitives to create new primitives

 Anything computable in one language is computable in any
other programming language

6.0001 LECTURE 1 20

ASPECTS OF LANGUAGES

 Primitive constructs
◦ English: words
◦ Programming language: numbers, strings, simple operators

6.0001 LECTURE 1 21

ASPECTS OF LANGUAGES

 Syntax
◦ English: "cat dog boy"  not syntactically valid

"cat hugs boy" syntactically valid
◦ programming language: "hi"5 not syntactically valid

"hi"*5 syntactically valid

6.0001 LECTURE 1 22

ASPECTS OF LANGUAGES

 Static semantics: which syntactically valid strings have
meaning
◦ English: "I are hungry" syntactically valid

but static semantic error
◦ PL: "hi"+5 syntactically valid

but static semantic error

6.0001 LECTURE 1 23

ASPECTS OF LANGUAGES

 Semantics: the meaning
associated with a syntactically
correct string of symbols with no
static semantic errors

 English: can have many meanings
"The chicken is
ready to eat."

 Programs have only one meaning

 But the meaning may not be
what programmer intended

6.0001 LECTURE 1 24

WHERE THINGS GO WRONG

 Syntactic errors
◦ Common and easily caught

 Static semantic errors
◦ Some languages check for these before running program
◦ Can cause unpredictable behavior

 No linguistic errors, but different meaning than what
programmer intended
◦ Program crashes, stops running
◦ Program runs forever
◦ Program gives an answer, but it’s wrong!

6.0001 LECTURE 1 25

PYTHON PROGRAMS

 A program is a sequence of definitions and commands
◦ Definitions evaluated
◦ Commands executed by Python interpreter in a shell

 Commands (statements) instruct interpreter to do something

 Can be typed directly in a shell or stored in a file that is read
into the shell and evaluated
◦ Problem Set 0 will introduce you to these in Anaconda

6.0001 LECTURE 1 26

OBJECTS

 Programs manipulate data objects

 Objects have a type that defines the kinds of things programs
can do to them
◦ 30 is a number so we can add/sub/mult/div/exp/etc
◦ 'Ana' is a string so we can look at substrings of it, but we

can’t divide it by a number

 Objects can be
◦ Scalar (cannot be subdivided)
◦ Non-scalar (have internal structure that can be accessed)

6.0001 LECTURE 1 27

SCALAR OBJECTS

 int – represent integers, ex. 5, -100

 float – represent real numbers, ex. 3.27, 2.0

 bool – represent Boolean values True and False

 NoneType – special and has one value, None

 can use type() to see the type of an object

>>> type(5)
int
>>> type(3.0)
float

6.0001 LECTURE 1 28

TYPE CONVERSIONS (CAST)

 Can convert object of one type to another
◦ float(3) converts the int 3 to float 3.0
◦ int(3.9) truncates the float 3.9 to int 3

 Some operations perform implicit casts
◦ round(3.9)returns the int 4

6.0001 LECTURE 1 29

EXPRESSIONS

 Combine objects and operators to form expressions

 An expression has a value, which has a type

 Syntax for a simple expression
<object> <operator> <object>

6.0001 LECTURE 1 30

OPERATORS ON ints and floats

 i+j  the sum

 i-j  the difference

 i*j  the product

 i/j  division

 i//j floor division

 i%j  the remainder when i is divided by j

 i**j i to the power of j

6.0001 LECTURE 1 31

if both are ints, result is int
if either or both are floats, result is float

result is always a float

What does it do?
What is type of output?

SIMPLE OPERATIONS

 Parentheses used to tell Python to do these operations first

 Operator precedence without parentheses
◦ **
◦ * / % executed left to right, as appear in expression
◦ + and – executed left to right, as appear in expression

6.0001 LECTURE 1 32

Five Minute Break

33

Trying to program using
only the 6 primitives

Finished ps0 by yourself

BINDING VARIABLES AND VALUES

 Equal sign is an assignment of a value to a variable name
 Equal sign is not “solve for x”
 An assignment binds a value to a name

 Compute the value on the right hand side  VALUE
◦ value stored in computer memory

 Store it (bind it) to the left hand side  VARIABLE
◦ retrieve value associated with name or variable by

invoking the name (typing it out)

6.0001 LECTURE 1 34

pi = 355/113

LIVE EXERCISE

http://bit.ly/60001-4

ABSTRACTING EXPRESSIONS

Why give names to values of expressions?
◦ To reuse names instead of values
◦ Makes code easier to read and modify

 Choose variable names wisely
◦ Code needs to read
◦ Today, tomorrow, next year
◦ By author and others

6.0001 LECTURE 1 35

#Compute approximate value for pi
pi = 355/113
radius = 2.2
area = pi*(radius**2)
circumference = pi*(radius*2)

CHANGING BINDINGS

 Can re-bind variable names using new assignment
statements

 Previous value may still stored in memory but lost the
handle for it

 Value for area does not change until you tell the computer
to do the calculation again

6.0001 LECTURE 1 36

pi

radius

area

3.14

2.2

15.1976

3.2

pi = 3.14
radius = 2.2
area = pi*(radius**2)
radius = radius+1

LIVE EXERCISE

http://bit.ly/60001-5

BINDING EXAMPLE

 Swap values of x and y?
x = 1
y = 2

y = x
x = y

 Swap values of x and y?
x = 1
y = 2
temp = y
y = x
x = temp

6.0001 LECTURE 1 37

STRINGS

 Letters, special characters, spaces, digits

 Think of an str as a sequence of case sensitive characters

 Enclose in quotation marks or single quotes
hi = "hello there"

 Concatenate strings
name = "Ana"
greeting = hi + " " + name

 Do some operations on a string as defined in Python docs
silly = hi + " " + name * 3

Many other operations on strings
◦ Hear all about them next time

6.0001 LECTURE 1 38

LIVE EXERCISE

http://bit.ly/60001-8

PRINTING

 Used to output stuff to console
In [11]: 3+2
Out[11]: 5

 Command is print
In [12]: print(3+2)
5

 Printing many objects in the same command

◦ Separate objects using commas, output them separated by spaces

◦ Concatenate strings together, then print as single object
x = 1

x_str = str(x)

print("my fav num is", x, ".", "x =", x)

print("my fav num is " + x_str + ". " + "x = " + x_str)

6.0001 LECTURE 1 39

LIVE EXERCISE

http://bit.ly/60001-2

INPUT

 x = input(s)
◦ prints the value of the string s
◦ user types in something and hits enter
◦ that value is assigned to the variable x

 Binds that value to a variable
text = input("Type anything... ")

print(5*text)

 input always returns an str, must cast if working with
numbers
num = int(input("Type a number... "))

print(5*num)

6.0001 LECTURE 1 40

COMPARISON OPERATORS

 i and j are variable names

 Comparisons below evaluate to a Boolean

i > j

i >= j

i < j

i <= j

i == j equality test, True if i is the same as j

i != j inequality test, True if i not the same as j

6.0001 LECTURE 1 42

LOGICAL OPERATORS ON bools

 a and b are variable names (with Boolean values)

not a  True if a is False
False if a is True

a and b  True if both are True

a or b  True if either or both are True

6.0001 LECTURE 1 43

A B A and B A or B
True True True True
True False False True
False True False True
False False False False

COMPARISON EXAMPLE

pset_time = 15

sleep_time = 8

print(sleep_time > pset_time)

derive = True

drink = False

both = drink and derive

print(both)

6.0001 LECTURE 1 44

But what good are they?

LIVE EXERCISE

http://bit.ly/60001-9

When we get to flow of control, i.e. branching to different
expressions based on values, we need a way of knowing if a
condition is true

 E.g., if something is true, do this, otherwise do that

WHY bools?

6.0001 LECTURE 1 45

boolean some
commands

some
commands

Because All Interesting Algorithms Involve Branching

6.0001 LECTURE 1 46

It’s midnight

Find a friend

Are you
Psetting?

Find a party

CONTROL FLOW - BRANCHING

if <condition>:
<statement>
<statement>
...

if <condition>:
<statement>
<statement>
...

else:
<statement>
<statement>
...

if <condition>:
<statement>
<statement>
...

elif <condition>:
<statement>
<statement>
...

else:
<statement>
<statement>
...

 <condition> has a value True or False

 evaluate statements in that block if <condition> is True

6.0001 LECTURE 1 47

INDENTATION MATTERS

x = int(input("Enter a number for x: "))
y = int(input("Enter a different number for y: "))
if x == y:

print(x,"and",y)
print("These are equal!")

6.0001 LECTURE 1 48

x = int(input("Enter a number for x: "))
y = int(input("Enter a different number for y: "))
if x == y:

print(x,"and",y)
print("These are equal!")

 Semantic structure matches visual structure

Monday

More strings

More branching

 Iteration

 Some more useful algorithmic ideas

6.0001 LECTURE 1 49

	WELCOME!�(download slides and .py files to follow along)
	TODAY
	COURSE INFO
	COURSE POLICIES
	Grading, Problem Sets and Finger Exercises
	Grading, Exams and Quizzes
	Fast-paced Subject
	TOPICS
	LET’S GO!
	Assigned Reading
	TYPES OF KNOWLEDGE
	A NUMERICAL EXAMPLE
	A NUMERICAL EXAMPLE
	A NUMERICAL EXAMPLE
	What We Have Here is an Algorithm
	Computers are Machines that Execute Algorithms
	 A computer will only do what you tell it to do �#programmer #computerscience
	Computers Are Machines that Execute Algorithms
	Stored Program Computer
	BASIC PRIMITIVES
	ASPECTS OF LANGUAGES
	ASPECTS OF LANGUAGES
	ASPECTS OF LANGUAGES
	ASPECTS OF LANGUAGES
	WHERE THINGS GO WRONG
	PYTHON PROGRAMS
	OBJECTS
	SCALAR OBJECTS
	TYPE CONVERSIONS (CAST)
	EXPRESSIONS
	OPERATORS ON ints and floats
	SIMPLE OPERATIONS
	Five Minute Break
	BINDING VARIABLES AND VALUES
	ABSTRACTING EXPRESSIONS
	 CHANGING BINDINGS
	BINDING EXAMPLE
	 STRINGS
	PRINTING
	INPUT
	COMPARISON OPERATORS
	LOGICAL OPERATORS ON bools
	COMPARISON EXAMPLE
	WHY bools?
	Because All Interesting Algorithms Involve Branching
	CONTROL FLOW - BRANCHING
	INDENTATION MATTERS
	Monday

