def

def

def

deep_ reverse (L) :
""" o gssumes L i1s a list of lists whose elements are ints
Mutates L such that it reverses its elements and also
reverses the order of the int elements in every element of L.
It does not return anything.
L.reverse ()
for subL in L:

subL.reverse ()

applyF filterG(L, £, g):
Assumes L is a list of integers
Assume functions f and g are defined for you.
f takes in an integer, applies a function, returns another integer
g takes in an integer, applies a Boolean function,
returns either True or False
Mutates L such that, for each element i originally in L, L contains
i if g(f(i)) returns True, and no other elements
Returns the largest element in the mutated L or -1 if the list is empty
mwwan
to remove = []
for s in L:
if not g(f(s)):
to _remove.append (s)

for s in to_ remove:
L.remove (8)
return max (L) if L != [] else -1

longest run (L) :
Assumes L is a list of integers containing at least 2 elements.
Finds the longest run of numbers in L, where the longest run can
either be monotonically increasing or monotonically decreasing.
In case of a tie for the longest run, choose the longest run
that occurs first.
Does not modify the list.
Returns the sum of the longest run.
def get sublists (L, n):

result = []

for i in range(len(L)-n+1):

result.append (L[i:i+n])
return result

for i in range(len(L), 0, -1):
possibles = get sublists (L, 1)
for p in possibles:
if p == sorted(p) or p == sorted(p, reverse=True):
return sum(p)



class MITCampus (Campus) :
""" A MITCampus is a Campus that contains tents """
def init (self, center loc, tent loc = Location(0,0)):
""" Assumes center loc and tent loc are Location objects
Initializes a new Campus centered at location center loc
with a tent at location tent loc """
Campus. init (self, center loc)
self.tents = [tent loc]
def add tent(self, new tent loc):
""" Assumes new_tent loc is a Location
Adds new_tent loc to the campus only if the tent is at least 0.5 distance
away from all other tents already there. Campus is unchanged otherwise.
Returns True 1f it could add the tent, False otherwise. """
for t in self.tents:
if t.dist from(new tent loc) < 0.5:
return False
self.tents.append(new_tent loc)
return True
def remove tent (self, tent loc):
""" Assumes tent loc is a Location
Removes tent loc from the campus.
Raises a ValueError if there is not a tent at tent loc.
Does not return anything """
try:
self.tents.remove (tent loc)
except:
raise ValueError
def get tents(self):
""" Returns a list of all tents on the campus. The list should contain
the string representation of the Location of a tent. The list should
be sorted by the x coordinate of the location. """
res = []
for t in self.tents:
res.append((t.getX(),t.get¥Y()))
res.sort ()
ans = []
for t in res:
ans.append (str (Location(t[0], t[1]1)))
return ans




